This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image A is a function. (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimage | ⊢ Fun Image 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) ⊆ ( V × V ) | |
| 2 | df-rel | ⊢ ( Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) ↔ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) ⊆ ( V × V ) ) | |
| 3 | 1 2 | mpbir | ⊢ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) |
| 4 | df-image | ⊢ Image 𝐴 = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) | |
| 5 | 4 | releqi | ⊢ ( Rel Image 𝐴 ↔ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) ) |
| 6 | 3 5 | mpbir | ⊢ Rel Image 𝐴 |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | brimage | ⊢ ( 𝑥 Image 𝐴 𝑦 ↔ 𝑦 = ( 𝐴 “ 𝑥 ) ) |
| 10 | vex | ⊢ 𝑧 ∈ V | |
| 11 | 7 10 | brimage | ⊢ ( 𝑥 Image 𝐴 𝑧 ↔ 𝑧 = ( 𝐴 “ 𝑥 ) ) |
| 12 | eqtr3 | ⊢ ( ( 𝑦 = ( 𝐴 “ 𝑥 ) ∧ 𝑧 = ( 𝐴 “ 𝑥 ) ) → 𝑦 = 𝑧 ) | |
| 13 | 9 11 12 | syl2anb | ⊢ ( ( 𝑥 Image 𝐴 𝑦 ∧ 𝑥 Image 𝐴 𝑧 ) → 𝑦 = 𝑧 ) |
| 14 | 13 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Image 𝐴 𝑦 ∧ 𝑥 Image 𝐴 𝑧 ) → 𝑦 = 𝑧 ) |
| 15 | 14 | ax-gen | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Image 𝐴 𝑦 ∧ 𝑥 Image 𝐴 𝑧 ) → 𝑦 = 𝑧 ) |
| 16 | dffun2 | ⊢ ( Fun Image 𝐴 ↔ ( Rel Image 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Image 𝐴 𝑦 ∧ 𝑥 Image 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 17 | 6 15 16 | mpbir2an | ⊢ Fun Image 𝐴 |