This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabab | ⊢ { 𝑥 ∈ V ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ V ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) } | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur | ⊢ ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) ) |
| 4 | 3 | abbii | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) } |
| 5 | 1 4 | eqtr4i | ⊢ { 𝑥 ∈ V ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } |