This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imageval | |- Image R = ( x e. _V |-> ( R " x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage | |- Fun Image R |
|
| 2 | funrel | |- ( Fun Image R -> Rel Image R ) |
|
| 3 | 1 2 | ax-mp | |- Rel Image R |
| 4 | mptrel | |- Rel ( x e. _V |-> ( R " x ) ) |
|
| 5 | vex | |- y e. _V |
|
| 6 | vex | |- z e. _V |
|
| 7 | 5 6 | breldm | |- ( y Image R z -> y e. dom Image R ) |
| 8 | fnimage | |- Image R Fn { x | ( R " x ) e. _V } |
|
| 9 | 8 | fndmi | |- dom Image R = { x | ( R " x ) e. _V } |
| 10 | 7 9 | eleqtrdi | |- ( y Image R z -> y e. { x | ( R " x ) e. _V } ) |
| 11 | 5 6 | breldm | |- ( y ( x e. _V |-> ( R " x ) ) z -> y e. dom ( x e. _V |-> ( R " x ) ) ) |
| 12 | eqid | |- ( x e. _V |-> ( R " x ) ) = ( x e. _V |-> ( R " x ) ) |
|
| 13 | 12 | dmmpt | |- dom ( x e. _V |-> ( R " x ) ) = { x e. _V | ( R " x ) e. _V } |
| 14 | rabab | |- { x e. _V | ( R " x ) e. _V } = { x | ( R " x ) e. _V } |
|
| 15 | 13 14 | eqtri | |- dom ( x e. _V |-> ( R " x ) ) = { x | ( R " x ) e. _V } |
| 16 | 11 15 | eleqtrdi | |- ( y ( x e. _V |-> ( R " x ) ) z -> y e. { x | ( R " x ) e. _V } ) |
| 17 | imaeq2 | |- ( x = y -> ( R " x ) = ( R " y ) ) |
|
| 18 | 17 | eleq1d | |- ( x = y -> ( ( R " x ) e. _V <-> ( R " y ) e. _V ) ) |
| 19 | 5 18 | elab | |- ( y e. { x | ( R " x ) e. _V } <-> ( R " y ) e. _V ) |
| 20 | 5 6 | brimage | |- ( y Image R z <-> z = ( R " y ) ) |
| 21 | eqcom | |- ( z = ( R " y ) <-> ( R " y ) = z ) |
|
| 22 | 17 12 | fvmptg | |- ( ( y e. _V /\ ( R " y ) e. _V ) -> ( ( x e. _V |-> ( R " x ) ) ` y ) = ( R " y ) ) |
| 23 | 5 22 | mpan | |- ( ( R " y ) e. _V -> ( ( x e. _V |-> ( R " x ) ) ` y ) = ( R " y ) ) |
| 24 | 23 | eqeq1d | |- ( ( R " y ) e. _V -> ( ( ( x e. _V |-> ( R " x ) ) ` y ) = z <-> ( R " y ) = z ) ) |
| 25 | funmpt | |- Fun ( x e. _V |-> ( R " x ) ) |
|
| 26 | df-fn | |- ( ( x e. _V |-> ( R " x ) ) Fn { x | ( R " x ) e. _V } <-> ( Fun ( x e. _V |-> ( R " x ) ) /\ dom ( x e. _V |-> ( R " x ) ) = { x | ( R " x ) e. _V } ) ) |
|
| 27 | 25 15 26 | mpbir2an | |- ( x e. _V |-> ( R " x ) ) Fn { x | ( R " x ) e. _V } |
| 28 | 19 | biimpri | |- ( ( R " y ) e. _V -> y e. { x | ( R " x ) e. _V } ) |
| 29 | fnbrfvb | |- ( ( ( x e. _V |-> ( R " x ) ) Fn { x | ( R " x ) e. _V } /\ y e. { x | ( R " x ) e. _V } ) -> ( ( ( x e. _V |-> ( R " x ) ) ` y ) = z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
|
| 30 | 27 28 29 | sylancr | |- ( ( R " y ) e. _V -> ( ( ( x e. _V |-> ( R " x ) ) ` y ) = z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
| 31 | 24 30 | bitr3d | |- ( ( R " y ) e. _V -> ( ( R " y ) = z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
| 32 | 21 31 | bitrid | |- ( ( R " y ) e. _V -> ( z = ( R " y ) <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
| 33 | 20 32 | bitrid | |- ( ( R " y ) e. _V -> ( y Image R z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
| 34 | 19 33 | sylbi | |- ( y e. { x | ( R " x ) e. _V } -> ( y Image R z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
| 35 | 10 16 34 | pm5.21nii | |- ( y Image R z <-> y ( x e. _V |-> ( R " x ) ) z ) |
| 36 | 3 4 35 | eqbrriv | |- Image R = ( x e. _V |-> ( R " x ) ) |