This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image R is a function over the set-like portion of R . (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnimage | ⊢ Image 𝑅 Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage | ⊢ Fun Image 𝑅 | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 2 3 | brimage | ⊢ ( 𝑦 Image 𝑅 𝑥 ↔ 𝑥 = ( 𝑅 “ 𝑦 ) ) |
| 5 | eqvisset | ⊢ ( 𝑥 = ( 𝑅 “ 𝑦 ) → ( 𝑅 “ 𝑦 ) ∈ V ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝑦 Image 𝑅 𝑥 → ( 𝑅 “ 𝑦 ) ∈ V ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 𝑦 Image 𝑅 𝑥 → ( 𝑅 “ 𝑦 ) ∈ V ) |
| 8 | eqid | ⊢ ( 𝑅 “ 𝑦 ) = ( 𝑅 “ 𝑦 ) | |
| 9 | brimageg | ⊢ ( ( 𝑦 ∈ V ∧ ( 𝑅 “ 𝑦 ) ∈ V ) → ( 𝑦 Image 𝑅 ( 𝑅 “ 𝑦 ) ↔ ( 𝑅 “ 𝑦 ) = ( 𝑅 “ 𝑦 ) ) ) | |
| 10 | 2 9 | mpan | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( 𝑦 Image 𝑅 ( 𝑅 “ 𝑦 ) ↔ ( 𝑅 “ 𝑦 ) = ( 𝑅 “ 𝑦 ) ) ) |
| 11 | 8 10 | mpbiri | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → 𝑦 Image 𝑅 ( 𝑅 “ 𝑦 ) ) |
| 12 | breq2 | ⊢ ( 𝑥 = ( 𝑅 “ 𝑦 ) → ( 𝑦 Image 𝑅 𝑥 ↔ 𝑦 Image 𝑅 ( 𝑅 “ 𝑦 ) ) ) | |
| 13 | 12 | spcegv | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( 𝑦 Image 𝑅 ( 𝑅 “ 𝑦 ) → ∃ 𝑥 𝑦 Image 𝑅 𝑥 ) ) |
| 14 | 11 13 | mpd | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ∃ 𝑥 𝑦 Image 𝑅 𝑥 ) |
| 15 | 7 14 | impbii | ⊢ ( ∃ 𝑥 𝑦 Image 𝑅 𝑥 ↔ ( 𝑅 “ 𝑦 ) ∈ V ) |
| 16 | 2 | eldm | ⊢ ( 𝑦 ∈ dom Image 𝑅 ↔ ∃ 𝑥 𝑦 Image 𝑅 𝑥 ) |
| 17 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 “ 𝑥 ) = ( 𝑅 “ 𝑦 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 “ 𝑥 ) ∈ V ↔ ( 𝑅 “ 𝑦 ) ∈ V ) ) |
| 19 | 2 18 | elab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ↔ ( 𝑅 “ 𝑦 ) ∈ V ) |
| 20 | 15 16 19 | 3bitr4i | ⊢ ( 𝑦 ∈ dom Image 𝑅 ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 21 | 20 | eqriv | ⊢ dom Image 𝑅 = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 22 | df-fn | ⊢ ( Image 𝑅 Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ↔ ( Fun Image 𝑅 ∧ dom Image 𝑅 = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) ) | |
| 23 | 1 21 22 | mpbir2an | ⊢ Image 𝑅 Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |