This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imagesset | ⊢ Image ◡ SSet ⊆ SSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝑦 ⊆ 𝑦 | |
| 2 | sseq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑦 ) ) | |
| 3 | 2 | rspcev | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ 𝑦 ) → ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
| 4 | 1 3 | mpan2 | ⊢ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 | elima | ⊢ ( 𝑦 ∈ ( ◡ SSet “ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑥 𝑧 ◡ SSet 𝑦 ) |
| 7 | vex | ⊢ 𝑧 ∈ V | |
| 8 | 7 5 | brcnv | ⊢ ( 𝑧 ◡ SSet 𝑦 ↔ 𝑦 SSet 𝑧 ) |
| 9 | 7 | brsset | ⊢ ( 𝑦 SSet 𝑧 ↔ 𝑦 ⊆ 𝑧 ) |
| 10 | 8 9 | bitri | ⊢ ( 𝑧 ◡ SSet 𝑦 ↔ 𝑦 ⊆ 𝑧 ) |
| 11 | 10 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑥 𝑧 ◡ SSet 𝑦 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
| 12 | 6 11 | bitri | ⊢ ( 𝑦 ∈ ( ◡ SSet “ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
| 13 | 4 12 | sylibr | ⊢ ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ( ◡ SSet “ 𝑥 ) ) |
| 14 | 13 | ssriv | ⊢ 𝑥 ⊆ ( ◡ SSet “ 𝑥 ) |
| 15 | sseq2 | ⊢ ( 𝑦 = ( ◡ SSet “ 𝑥 ) → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ( ◡ SSet “ 𝑥 ) ) ) | |
| 16 | 14 15 | mpbiri | ⊢ ( 𝑦 = ( ◡ SSet “ 𝑥 ) → 𝑥 ⊆ 𝑦 ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 5 | brimage | ⊢ ( 𝑥 Image ◡ SSet 𝑦 ↔ 𝑦 = ( ◡ SSet “ 𝑥 ) ) |
| 19 | df-br | ⊢ ( 𝑥 Image ◡ SSet 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet ) | |
| 20 | 18 19 | bitr3i | ⊢ ( 𝑦 = ( ◡ SSet “ 𝑥 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet ) |
| 21 | 5 | brsset | ⊢ ( 𝑥 SSet 𝑦 ↔ 𝑥 ⊆ 𝑦 ) |
| 22 | df-br | ⊢ ( 𝑥 SSet 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ SSet ) | |
| 23 | 21 22 | bitr3i | ⊢ ( 𝑥 ⊆ 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
| 24 | 16 20 23 | 3imtr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
| 25 | 24 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
| 26 | funimage | ⊢ Fun Image ◡ SSet | |
| 27 | funrel | ⊢ ( Fun Image ◡ SSet → Rel Image ◡ SSet ) | |
| 28 | ssrel | ⊢ ( Rel Image ◡ SSet → ( Image ◡ SSet ⊆ SSet ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) ) ) | |
| 29 | 26 27 28 | mp2b | ⊢ ( Image ◡ SSet ⊆ SSet ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) ) |
| 30 | 25 29 | mpbir | ⊢ Image ◡ SSet ⊆ SSet |