This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brub.1 | ⊢ 𝑆 ∈ V | |
| brub.2 | ⊢ 𝐴 ∈ V | ||
| Assertion | brub | ⊢ ( 𝑆 UB 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brub.1 | ⊢ 𝑆 ∈ V | |
| 2 | brub.2 | ⊢ 𝐴 ∈ V | |
| 3 | brxp | ⊢ ( 𝑆 ( V × V ) 𝐴 ↔ ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ 𝑆 ( V × V ) 𝐴 |
| 5 | brdif | ⊢ ( 𝑆 ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) 𝐴 ↔ ( 𝑆 ( V × V ) 𝐴 ∧ ¬ 𝑆 ( ( V ∖ 𝑅 ) ∘ ◡ E ) 𝐴 ) ) | |
| 6 | 4 5 | mpbiran | ⊢ ( 𝑆 ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) 𝐴 ↔ ¬ 𝑆 ( ( V ∖ 𝑅 ) ∘ ◡ E ) 𝐴 ) |
| 7 | 1 2 | coepr | ⊢ ( 𝑆 ( ( V ∖ 𝑅 ) ∘ ◡ E ) 𝐴 ↔ ∃ 𝑥 ∈ 𝑆 𝑥 ( V ∖ 𝑅 ) 𝐴 ) |
| 8 | 6 7 | xchbinx | ⊢ ( 𝑆 ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) 𝐴 ↔ ¬ ∃ 𝑥 ∈ 𝑆 𝑥 ( V ∖ 𝑅 ) 𝐴 ) |
| 9 | df-ub | ⊢ UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) | |
| 10 | 9 | breqi | ⊢ ( 𝑆 UB 𝑅 𝐴 ↔ 𝑆 ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) 𝐴 ) |
| 11 | brv | ⊢ 𝑥 V 𝐴 | |
| 12 | brdif | ⊢ ( 𝑥 ( V ∖ 𝑅 ) 𝐴 ↔ ( 𝑥 V 𝐴 ∧ ¬ 𝑥 𝑅 𝐴 ) ) | |
| 13 | 11 12 | mpbiran | ⊢ ( 𝑥 ( V ∖ 𝑅 ) 𝐴 ↔ ¬ 𝑥 𝑅 𝐴 ) |
| 14 | 13 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝑆 𝑥 ( V ∖ 𝑅 ) 𝐴 ↔ ∃ 𝑥 ∈ 𝑆 ¬ 𝑥 𝑅 𝐴 ) |
| 15 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝑆 ¬ 𝑥 𝑅 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝐴 ) | |
| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝑆 𝑥 ( V ∖ 𝑅 ) 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝐴 ) |
| 17 | 16 | con2bii | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝐴 ↔ ¬ ∃ 𝑥 ∈ 𝑆 𝑥 ( V ∖ 𝑅 ) 𝐴 ) |
| 18 | 8 10 17 | 3bitr4i | ⊢ ( 𝑆 UB 𝑅 𝐴 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝐴 ) |