This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brsset.1 | ⊢ 𝐵 ∈ V | |
| Assertion | brsset | ⊢ ( 𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsset.1 | ⊢ 𝐵 ∈ V | |
| 2 | relsset | ⊢ Rel SSet | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 SSet 𝐵 → 𝐴 ∈ V ) |
| 4 | 1 | ssex | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) |
| 5 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 SSet 𝐵 ↔ 𝐴 SSet 𝐵 ) ) | |
| 6 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 7 | opex | ⊢ 〈 𝑥 , 𝐵 〉 ∈ V | |
| 8 | 7 | elrn | ⊢ ( 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ↔ ∃ 𝑦 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ) |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 9 10 1 | brtxp | ⊢ ( 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ↔ ( 𝑦 E 𝑥 ∧ 𝑦 ( V ∖ E ) 𝐵 ) ) |
| 12 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 13 | brv | ⊢ 𝑦 V 𝐵 | |
| 14 | brdif | ⊢ ( 𝑦 ( V ∖ E ) 𝐵 ↔ ( 𝑦 V 𝐵 ∧ ¬ 𝑦 E 𝐵 ) ) | |
| 15 | 13 14 | mpbiran | ⊢ ( 𝑦 ( V ∖ E ) 𝐵 ↔ ¬ 𝑦 E 𝐵 ) |
| 16 | 1 | epeli | ⊢ ( 𝑦 E 𝐵 ↔ 𝑦 ∈ 𝐵 ) |
| 17 | 15 16 | xchbinx | ⊢ ( 𝑦 ( V ∖ E ) 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) |
| 18 | 12 17 | anbi12i | ⊢ ( ( 𝑦 E 𝑥 ∧ 𝑦 ( V ∖ E ) 𝐵 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 19 | 11 18 | bitri | ⊢ ( 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 20 | 19 | exbii | ⊢ ( ∃ 𝑦 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 21 | exanali | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) | |
| 22 | 8 20 21 | 3bitrri | ⊢ ( ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ↔ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
| 23 | 22 | con1bii | ⊢ ( ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) |
| 24 | df-br | ⊢ ( 𝑥 SSet 𝐵 ↔ 〈 𝑥 , 𝐵 〉 ∈ SSet ) | |
| 25 | df-sset | ⊢ SSet = ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) | |
| 26 | 25 | eleq2i | ⊢ ( 〈 𝑥 , 𝐵 〉 ∈ SSet ↔ 〈 𝑥 , 𝐵 〉 ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ) |
| 27 | 10 1 | opelvv | ⊢ 〈 𝑥 , 𝐵 〉 ∈ ( V × V ) |
| 28 | eldif | ⊢ ( 〈 𝑥 , 𝐵 〉 ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ↔ ( 〈 𝑥 , 𝐵 〉 ∈ ( V × V ) ∧ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) ) | |
| 29 | 27 28 | mpbiran | ⊢ ( 〈 𝑥 , 𝐵 〉 ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ↔ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
| 30 | 26 29 | bitri | ⊢ ( 〈 𝑥 , 𝐵 〉 ∈ SSet ↔ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
| 31 | 24 30 | bitri | ⊢ ( 𝑥 SSet 𝐵 ↔ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
| 32 | df-ss | ⊢ ( 𝑥 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) | |
| 33 | 23 31 32 | 3bitr4i | ⊢ ( 𝑥 SSet 𝐵 ↔ 𝑥 ⊆ 𝐵 ) |
| 34 | 5 6 33 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( 𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| 35 | 3 4 34 | pm5.21nii | ⊢ ( 𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵 ) |