This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imagesset | |- Image `' SSet C_ SSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- y C_ y |
|
| 2 | sseq2 | |- ( z = y -> ( y C_ z <-> y C_ y ) ) |
|
| 3 | 2 | rspcev | |- ( ( y e. x /\ y C_ y ) -> E. z e. x y C_ z ) |
| 4 | 1 3 | mpan2 | |- ( y e. x -> E. z e. x y C_ z ) |
| 5 | vex | |- y e. _V |
|
| 6 | 5 | elima | |- ( y e. ( `' SSet " x ) <-> E. z e. x z `' SSet y ) |
| 7 | vex | |- z e. _V |
|
| 8 | 7 5 | brcnv | |- ( z `' SSet y <-> y SSet z ) |
| 9 | 7 | brsset | |- ( y SSet z <-> y C_ z ) |
| 10 | 8 9 | bitri | |- ( z `' SSet y <-> y C_ z ) |
| 11 | 10 | rexbii | |- ( E. z e. x z `' SSet y <-> E. z e. x y C_ z ) |
| 12 | 6 11 | bitri | |- ( y e. ( `' SSet " x ) <-> E. z e. x y C_ z ) |
| 13 | 4 12 | sylibr | |- ( y e. x -> y e. ( `' SSet " x ) ) |
| 14 | 13 | ssriv | |- x C_ ( `' SSet " x ) |
| 15 | sseq2 | |- ( y = ( `' SSet " x ) -> ( x C_ y <-> x C_ ( `' SSet " x ) ) ) |
|
| 16 | 14 15 | mpbiri | |- ( y = ( `' SSet " x ) -> x C_ y ) |
| 17 | vex | |- x e. _V |
|
| 18 | 17 5 | brimage | |- ( x Image `' SSet y <-> y = ( `' SSet " x ) ) |
| 19 | df-br | |- ( x Image `' SSet y <-> <. x , y >. e. Image `' SSet ) |
|
| 20 | 18 19 | bitr3i | |- ( y = ( `' SSet " x ) <-> <. x , y >. e. Image `' SSet ) |
| 21 | 5 | brsset | |- ( x SSet y <-> x C_ y ) |
| 22 | df-br | |- ( x SSet y <-> <. x , y >. e. SSet ) |
|
| 23 | 21 22 | bitr3i | |- ( x C_ y <-> <. x , y >. e. SSet ) |
| 24 | 16 20 23 | 3imtr3i | |- ( <. x , y >. e. Image `' SSet -> <. x , y >. e. SSet ) |
| 25 | 24 | gen2 | |- A. x A. y ( <. x , y >. e. Image `' SSet -> <. x , y >. e. SSet ) |
| 26 | funimage | |- Fun Image `' SSet |
|
| 27 | funrel | |- ( Fun Image `' SSet -> Rel Image `' SSet ) |
|
| 28 | ssrel | |- ( Rel Image `' SSet -> ( Image `' SSet C_ SSet <-> A. x A. y ( <. x , y >. e. Image `' SSet -> <. x , y >. e. SSet ) ) ) |
|
| 29 | 26 27 28 | mp2b | |- ( Image `' SSet C_ SSet <-> A. x A. y ( <. x , y >. e. Image `' SSet -> <. x , y >. e. SSet ) ) |
| 30 | 25 29 | mpbir | |- Image `' SSet C_ SSet |