This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu2nda.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfu2nda.d | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) | ||
| idfu2nda.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | ||
| idfu2nda.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| idfu2nda.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| idfu2nda.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) | ||
| Assertion | idfu2nda | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfu2nda.d | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 3 | idfu2nda.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | |
| 4 | idfu2nda.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | idfu2nda.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | idfu2nda.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 8 | 1 2 | eqeltrrid | ⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 9 | idfurcl | ⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 12 | 1 2 3 | idfu1stalem | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 13 | 4 12 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 14 | 5 12 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 15 | 1 7 10 11 13 14 | idfu2nd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 16 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 17 | 1 | idfucl | ⊢ ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 18 | 10 17 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 19 | 18 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 20 | 2 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐼 ) ) |
| 21 | 19 20 | funchomf | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 22 | 7 11 16 21 13 14 | homfeqval | ⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 23 | 6 22 | eqtr4d | ⊢ ( 𝜑 → 𝐻 = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 24 | 23 | reseq2d | ⊢ ( 𝜑 → ( I ↾ 𝐻 ) = ( I ↾ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 25 | 15 24 | eqtr4d | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ 𝐻 ) ) |