This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for idfu1sta . (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu2nda.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfu2nda.d | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) | ||
| idfu2nda.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | ||
| Assertion | idfu1stalem | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfu2nda.d | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 3 | idfu2nda.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | |
| 4 | 1 2 | eqeltrrid | ⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 5 | idfurcl | ⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) | |
| 6 | 1 | idfucl | ⊢ ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 8 | 7 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 9 | 2 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐼 ) ) |
| 10 | 8 9 | funchomf | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 11 | 10 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 12 | 3 11 | eqtr4d | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |