This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasubc . (Contributed by Zhi Wang, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| imasubclem1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| Assertion | imasubclem1 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | imasubclem1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | cnvexg | ⊢ ( 𝐹 ∈ 𝑉 → ◡ 𝐹 ∈ V ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ◡ 𝐹 ∈ V ) |
| 5 | 4 | imaexd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐴 ) ∈ V ) |
| 6 | cnvexg | ⊢ ( 𝐺 ∈ 𝑊 → ◡ 𝐺 ∈ V ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ◡ 𝐺 ∈ V ) |
| 8 | 7 | imaexd | ⊢ ( 𝜑 → ( ◡ 𝐺 “ 𝐵 ) ∈ V ) |
| 9 | 5 8 | xpexd | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ∈ V ) |
| 10 | fvex | ⊢ ( 𝐻 ‘ 𝐶 ) ∈ V | |
| 11 | 10 | imaex | ⊢ ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V |
| 12 | 11 | rgenw | ⊢ ∀ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V |
| 13 | iunexg | ⊢ ( ( ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ∈ V ∧ ∀ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) | |
| 14 | 9 12 13 | sylancl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |