This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu2nda.i | |- I = ( idFunc ` C ) |
|
| idfu2nda.d | |- ( ph -> I e. ( D Func E ) ) |
||
| idfu2nda.b | |- ( ph -> B = ( Base ` D ) ) |
||
| idfu2nda.x | |- ( ph -> X e. B ) |
||
| idfu2nda.y | |- ( ph -> Y e. B ) |
||
| idfu2nda.h | |- ( ph -> H = ( X ( Hom ` D ) Y ) ) |
||
| Assertion | idfu2nda | |- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | |- I = ( idFunc ` C ) |
|
| 2 | idfu2nda.d | |- ( ph -> I e. ( D Func E ) ) |
|
| 3 | idfu2nda.b | |- ( ph -> B = ( Base ` D ) ) |
|
| 4 | idfu2nda.x | |- ( ph -> X e. B ) |
|
| 5 | idfu2nda.y | |- ( ph -> Y e. B ) |
|
| 6 | idfu2nda.h | |- ( ph -> H = ( X ( Hom ` D ) Y ) ) |
|
| 7 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 8 | 1 2 | eqeltrrid | |- ( ph -> ( idFunc ` C ) e. ( D Func E ) ) |
| 9 | idfurcl | |- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |
|
| 10 | 8 9 | syl | |- ( ph -> C e. Cat ) |
| 11 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 12 | 1 2 3 | idfu1stalem | |- ( ph -> B = ( Base ` C ) ) |
| 13 | 4 12 | eleqtrd | |- ( ph -> X e. ( Base ` C ) ) |
| 14 | 5 12 | eleqtrd | |- ( ph -> Y e. ( Base ` C ) ) |
| 15 | 1 7 10 11 13 14 | idfu2nd | |- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` ( X ( Hom ` C ) Y ) ) ) |
| 16 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 17 | 1 | idfucl | |- ( C e. Cat -> I e. ( C Func C ) ) |
| 18 | 10 17 | syl | |- ( ph -> I e. ( C Func C ) ) |
| 19 | 18 | func1st2nd | |- ( ph -> ( 1st ` I ) ( C Func C ) ( 2nd ` I ) ) |
| 20 | 2 | func1st2nd | |- ( ph -> ( 1st ` I ) ( D Func E ) ( 2nd ` I ) ) |
| 21 | 19 20 | funchomf | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 22 | 7 11 16 21 13 14 | homfeqval | |- ( ph -> ( X ( Hom ` C ) Y ) = ( X ( Hom ` D ) Y ) ) |
| 23 | 6 22 | eqtr4d | |- ( ph -> H = ( X ( Hom ` C ) Y ) ) |
| 24 | 23 | reseq2d | |- ( ph -> ( _I |` H ) = ( _I |` ( X ( Hom ` C ) Y ) ) ) |
| 25 | 15 24 | eqtr4d | |- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` H ) ) |