This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funchomf.1 | ⊢ ( 𝜑 → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) | |
| funchomf.2 | ⊢ ( 𝜑 → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) | ||
| Assertion | funchomf | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funchomf.1 | ⊢ ( 𝜑 → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) | |
| 2 | funchomf.2 | ⊢ ( 𝜑 → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) |
| 7 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 8 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 9 | 3 4 5 6 7 8 | funcf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 | 9 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 12 | eqid | ⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) | |
| 13 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 14 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 16 | 3 15 1 | funcf1 | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 17 | 16 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐴 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 19 | 11 18 2 | funcf1 | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 20 | 19 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐵 ) ) |
| 21 | fndmu | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝐴 ) ∧ 𝐹 Fn ( Base ‘ 𝐵 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) | |
| 22 | 17 20 21 | syl2anc | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 24 | 7 23 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐵 ) ) |
| 25 | 8 23 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐵 ) ) |
| 26 | 11 12 13 14 24 25 | funcf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | 26 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 28 | fndmu | ⊢ ( ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) | |
| 29 | 10 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 30 | 29 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 31 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) ) | |
| 32 | 4 12 31 22 | homfeq | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) ) |
| 33 | 30 32 | mpbird | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |