This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idfurcl | ⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | ⊢ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ∈ V | |
| 2 | 1 | csbex | ⊢ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ∈ V |
| 3 | df-idfu | ⊢ idfunc = ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) | |
| 4 | 2 3 | dmmpti | ⊢ dom idfunc = Cat |
| 5 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 6 | 0nelrel0 | ⊢ ( Rel ( 𝐷 Func 𝐸 ) → ¬ ∅ ∈ ( 𝐷 Func 𝐸 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ¬ ∅ ∈ ( 𝐷 Func 𝐸 ) |
| 8 | 4 7 | ndmfvrcl | ⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |