This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit at the lower bound, of a continuous function defined on a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icocncflimc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| icocncflimc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| icocncflimc.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| icocncflimc.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,) 𝐵 ) –cn→ ℂ ) ) | ||
| Assertion | icocncflimc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icocncflimc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | icocncflimc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | icocncflimc.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | icocncflimc.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,) 𝐵 ) –cn→ ℂ ) ) | |
| 5 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 | 1 | leidd | ⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 7 | 5 2 5 6 3 | elicod | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 8 | 4 7 | cnlimci | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 9 | cncfrss | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,) 𝐵 ) –cn→ ℂ ) → ( 𝐴 [,) 𝐵 ) ⊆ ℂ ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ℂ ) |
| 11 | ssid | ⊢ ℂ ⊆ ℂ | |
| 12 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 13 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) | |
| 14 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) | |
| 15 | 12 13 14 | cncfcn | ⊢ ( ( ( 𝐴 [,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
| 16 | 10 11 15 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
| 17 | 4 16 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
| 18 | 12 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 20 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,) 𝐵 ) ) ) | |
| 21 | 19 10 20 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 22 | 12 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 23 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 24 | 23 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 25 | 22 24 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 26 | 25 | cnfldtopon | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ∈ ( TopOn ‘ ℂ ) |
| 27 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,) 𝐵 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ↔ ( 𝐹 : ( 𝐴 [,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ‘ 𝑥 ) ) ) ) | |
| 28 | 21 26 27 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ↔ ( 𝐹 : ( 𝐴 [,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ‘ 𝑥 ) ) ) ) |
| 29 | 17 28 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : ( 𝐴 [,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ‘ 𝑥 ) ) ) |
| 30 | 29 | simpld | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,) 𝐵 ) ⟶ ℂ ) |
| 31 | ioossico | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) | |
| 32 | 31 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) ) |
| 33 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) | |
| 34 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 35 | 23 | ntrtop | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ ) |
| 36 | 22 35 | ax-mp | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ |
| 37 | undif | ⊢ ( ( 𝐴 [,) 𝐵 ) ⊆ ℂ ↔ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) = ℂ ) | |
| 38 | 10 37 | sylib | ⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) = ℂ ) |
| 39 | 38 | eqcomd | ⊢ ( 𝜑 → ℂ = ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) |
| 40 | 39 | fveq2d | ⊢ ( 𝜑 → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) ) |
| 41 | 36 40 | eqtr3id | ⊢ ( 𝜑 → ℂ = ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) ) |
| 42 | 34 41 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) ) |
| 43 | 42 7 | elind | ⊢ ( 𝜑 → 𝐴 ∈ ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
| 44 | 22 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 45 | ssid | ⊢ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) | |
| 46 | 45 | a1i | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) ) |
| 47 | 23 13 | restntr | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ⊆ ℂ ∧ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
| 48 | 44 10 46 47 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 [,) 𝐵 ) ) ) ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
| 49 | 43 48 | eleqtrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 50 | 7 | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ ( 𝐴 [,) 𝐵 ) ) |
| 51 | ssequn2 | ⊢ ( { 𝐴 } ⊆ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) | |
| 52 | 50 51 | sylib | ⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
| 53 | 52 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) |
| 54 | 53 | oveq2d | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
| 55 | 54 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) ) ) |
| 56 | snunioo1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) | |
| 57 | 5 2 3 56 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
| 58 | 57 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) |
| 59 | 55 58 | fveq12d | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
| 60 | 49 59 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
| 61 | 30 32 10 12 33 60 | limcres | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |
| 62 | 8 61 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |