This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccdifprioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 2 | 1 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
| 3 | 2 | difeq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ∖ { 𝐴 , 𝐵 } ) ) |
| 4 | difun2 | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ∖ { 𝐴 , 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 , 𝐵 } ) | |
| 5 | iooinlbub | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ | |
| 6 | disj3 | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ ↔ ( 𝐴 (,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ) | |
| 7 | 5 6 | mpbi | ⊢ ( 𝐴 (,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 , 𝐵 } ) |
| 8 | 4 7 | eqtr4i | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) |
| 9 | 3 8 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
| 11 | difssd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ¬ 𝐴 ≤ 𝐵 ) | |
| 13 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 15 | 12 14 | mtbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ¬ ¬ 𝐵 < 𝐴 ) |
| 16 | 15 | notnotrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 < 𝐴 ) |
| 17 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 19 | 16 18 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 20 | 11 19 | sseqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ⊆ ∅ ) |
| 21 | ss0 | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ⊆ ∅ → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ∅ ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ∅ ) |
| 23 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 24 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) | |
| 25 | 23 24 16 | xrltled | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 26 | ioo0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) | |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 28 | 25 27 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 29 | 22 28 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
| 30 | 10 29 | pm2.61dan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |