This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooinlbub | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjr | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 2 | elpri | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) | |
| 3 | lbioo | ⊢ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) | |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) ) | |
| 5 | 3 4 | mtbiri | ⊢ ( 𝑥 = 𝐴 → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 6 | ubioo | ⊢ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) | |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ) ) | |
| 8 | 6 7 | mtbiri | ⊢ ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 9 | 5 8 | jaoi | ⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 10 | 2 9 | syl | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } → ¬ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 11 | 1 10 | mprgbir | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ |