This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of ioossioo . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioossioobi.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| ioossioobi.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| ioossioobi.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| ioossioobi.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | ||
| ioossioobi.cltd | ⊢ ( 𝜑 → 𝐶 < 𝐷 ) | ||
| Assertion | ioossioobi | ⊢ ( 𝜑 → ( ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossioobi.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | ioossioobi.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | ioossioobi.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | ioossioobi.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | |
| 5 | ioossioobi.cltd | ⊢ ( 𝜑 → 𝐶 < 𝐷 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 7 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 8 | 7 | ixxssxr | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ* |
| 9 | infxrss | ⊢ ( ( ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ* ) → inf ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) ≤ inf ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) ) | |
| 10 | 6 8 9 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → inf ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) ≤ inf ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 13 | ioon0 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( ( 𝐶 (,) 𝐷 ) ≠ ∅ ↔ 𝐶 < 𝐷 ) ) | |
| 14 | 3 4 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐶 (,) 𝐷 ) ≠ ∅ ↔ 𝐶 < 𝐷 ) ) |
| 15 | 5 14 | mpbird | ⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ≠ ∅ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 (,) 𝐷 ) ≠ ∅ ) |
| 17 | ssn0 | ⊢ ( ( ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐶 (,) 𝐷 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) | |
| 18 | 6 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 19 | idd | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 < 𝐵 ) ) | |
| 20 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 ≤ 𝐵 ) ) | |
| 21 | idd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 < 𝑤 ) ) | |
| 22 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 23 | 7 19 20 21 22 | ixxlb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → inf ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) = 𝐴 ) |
| 24 | 11 12 18 23 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → inf ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) = 𝐴 ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 26 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → 𝐷 ∈ ℝ* ) |
| 27 | idd | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( 𝑤 < 𝐷 → 𝑤 < 𝐷 ) ) | |
| 28 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( 𝑤 < 𝐷 → 𝑤 ≤ 𝐷 ) ) | |
| 29 | idd | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐶 < 𝑤 → 𝐶 < 𝑤 ) ) | |
| 30 | xrltle | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐶 < 𝑤 → 𝐶 ≤ 𝑤 ) ) | |
| 31 | 7 27 28 29 30 | ixxlb | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ ( 𝐶 (,) 𝐷 ) ≠ ∅ ) → inf ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) = 𝐶 ) |
| 32 | 25 26 16 31 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → inf ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) = 𝐶 ) |
| 33 | 10 24 32 | 3brtr3d | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 34 | supxrss | ⊢ ( ( ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ* ) → sup ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) ≤ sup ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) ) | |
| 35 | 6 8 34 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → sup ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) ≤ sup ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) ) |
| 36 | 7 27 28 29 30 | ixxub | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ ( 𝐶 (,) 𝐷 ) ≠ ∅ ) → sup ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) = 𝐷 ) |
| 37 | 25 26 16 36 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → sup ( ( 𝐶 (,) 𝐷 ) , ℝ* , < ) = 𝐷 ) |
| 38 | 7 19 20 21 22 | ixxub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → sup ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) = 𝐵 ) |
| 39 | 11 12 18 38 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → sup ( ( 𝐴 (,) 𝐵 ) , ℝ* , < ) = 𝐵 ) |
| 40 | 35 37 39 | 3brtr3d | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → 𝐷 ≤ 𝐵 ) |
| 41 | 33 40 | jca | ⊢ ( ( 𝜑 ∧ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |
| 42 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 43 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 44 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐶 ) | |
| 45 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐷 ≤ 𝐵 ) | |
| 46 | ioossioo | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 47 | 42 43 44 45 46 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 48 | 41 47 | impbida | ⊢ ( 𝜑 → ( ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) ) |