This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccdifprioo | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 2 | 1 | eqcomd | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A [,] B ) = ( ( A (,) B ) u. { A , B } ) ) |
| 3 | 2 | difeq1d | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( ( ( A (,) B ) u. { A , B } ) \ { A , B } ) ) |
| 4 | difun2 | |- ( ( ( A (,) B ) u. { A , B } ) \ { A , B } ) = ( ( A (,) B ) \ { A , B } ) |
|
| 5 | iooinlbub | |- ( ( A (,) B ) i^i { A , B } ) = (/) |
|
| 6 | disj3 | |- ( ( ( A (,) B ) i^i { A , B } ) = (/) <-> ( A (,) B ) = ( ( A (,) B ) \ { A , B } ) ) |
|
| 7 | 5 6 | mpbi | |- ( A (,) B ) = ( ( A (,) B ) \ { A , B } ) |
| 8 | 4 7 | eqtr4i | |- ( ( ( A (,) B ) u. { A , B } ) \ { A , B } ) = ( A (,) B ) |
| 9 | 3 8 | eqtrdi | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| 10 | 9 | 3expa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| 11 | difssd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) C_ ( A [,] B ) ) |
|
| 12 | simpr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> -. A <_ B ) |
|
| 13 | xrlenlt | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
|
| 14 | 13 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( A <_ B <-> -. B < A ) ) |
| 15 | 12 14 | mtbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> -. -. B < A ) |
| 16 | 15 | notnotrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B < A ) |
| 17 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 18 | 17 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 19 | 16 18 | mpbird | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( A [,] B ) = (/) ) |
| 20 | 11 19 | sseqtrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) C_ (/) ) |
| 21 | ss0 | |- ( ( ( A [,] B ) \ { A , B } ) C_ (/) -> ( ( A [,] B ) \ { A , B } ) = (/) ) |
|
| 22 | 20 21 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = (/) ) |
| 23 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B e. RR* ) |
|
| 24 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> A e. RR* ) |
|
| 25 | 23 24 16 | xrltled | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B <_ A ) |
| 26 | ioo0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
|
| 27 | 26 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 28 | 25 27 | mpbird | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( A (,) B ) = (/) ) |
| 29 | 22 28 | eqtr4d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |
| 30 | 10 29 | pm2.61dan | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) \ { A , B } ) = ( A (,) B ) ) |