This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgposval and itgreval . (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgvallem3.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 0 ) | |
| Assertion | itgvallem3 | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgvallem3.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 0 ) | |
| 2 | 1 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 = 0 ) |
| 3 | 2 | ifeq1da | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 0 , 0 ) ) |
| 4 | ifid | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 0 , 0 ) = 0 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = 0 ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 7 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 8 | 6 7 | eqtr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( ℝ × { 0 } ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
| 10 | itg20 | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) = 0 ) |