This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is integrable". The "integrable" predicate corresponds roughly to the range of validity of S. A Bd x , which is to say that the expression S. A B d x doesn't make sense unless ( x e. A |-> B ) e. L^1 . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isibl.1 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) | |
| isibl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | ||
| isibl.3 | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) | ||
| isibl.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) | ||
| Assertion | isibl | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝐿1 ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isibl.1 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) | |
| 2 | isibl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | |
| 3 | isibl.3 | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) | |
| 4 | isibl.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) | |
| 5 | fvex | ⊢ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ∈ V | |
| 6 | breq2 | ⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → ( 0 ≤ 𝑦 ↔ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 8 | id | ⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) | |
| 9 | 7 8 | ifbieq1d | ⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 10 | 5 9 | csbie | ⊢ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 11 | dmeq | ⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) | |
| 12 | 11 | eleq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ dom 𝑓 ↔ 𝑥 ∈ dom 𝐹 ) ) |
| 13 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 14 | 13 | fvoveq1d | ⊢ ( 𝑓 = 𝐹 → ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) |
| 15 | 14 | breq2d | ⊢ ( 𝑓 = 𝐹 → ( 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) |
| 16 | 12 15 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 17 | 16 14 | ifbieq1d | ⊢ ( 𝑓 = 𝐹 → if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 18 | 10 17 | eqtrid | ⊢ ( 𝑓 = 𝐹 → ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 19 | 18 | mpteq2dv | ⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 21 | 20 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 22 | 21 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ ↔ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 23 | df-ibl | ⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } | |
| 24 | 22 23 | elrab2 | ⊢ ( 𝐹 ∈ 𝐿1 ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 25 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
| 26 | 25 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 27 | 26 | ifbid | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 28 | 4 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 29 | 28 2 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = 𝑇 ) |
| 30 | 29 | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
| 31 | 27 30 | eqtrd | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
| 32 | 31 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 33 | 32 1 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = 𝐺 ) |
| 34 | 33 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ 𝐺 ) ) |
| 35 | 34 | eleq1d | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |
| 37 | 36 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |
| 38 | 24 37 | bitrid | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝐿1 ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |