This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function is integrable on any measurable set. (Unlike iblconst , this does not require A to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ibl0 | |- ( A e. dom vol -> ( A X. { 0 } ) e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | mbfconst | |- ( ( A e. dom vol /\ 0 e. CC ) -> ( A X. { 0 } ) e. MblFn ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. dom vol -> ( A X. { 0 } ) e. MblFn ) |
| 4 | ax-icn | |- _i e. CC |
|
| 5 | ine0 | |- _i =/= 0 |
|
| 6 | elfzelz | |- ( k e. ( 0 ... 3 ) -> k e. ZZ ) |
|
| 7 | 6 | ad2antlr | |- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> k e. ZZ ) |
| 8 | expclz | |- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) e. CC ) |
|
| 9 | expne0i | |- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) =/= 0 ) |
|
| 10 | 8 9 | div0d | |- ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( 0 / ( _i ^ k ) ) = 0 ) |
| 11 | 4 5 7 10 | mp3an12i | |- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> ( 0 / ( _i ^ k ) ) = 0 ) |
| 12 | 11 | fveq2d | |- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` 0 ) ) |
| 13 | re0 | |- ( Re ` 0 ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) /\ x e. A ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = 0 ) |
| 15 | 14 | itgvallem3 | |- ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) = 0 ) |
| 16 | 0re | |- 0 e. RR |
|
| 17 | 15 16 | eqeltrdi | |- ( ( A e. dom vol /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
| 18 | 17 | ralrimiva | |- ( A e. dom vol -> A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
| 19 | eqidd | |- ( A e. dom vol -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) |
|
| 20 | eqidd | |- ( ( A e. dom vol /\ x e. A ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) ) |
|
| 21 | c0ex | |- 0 e. _V |
|
| 22 | 21 | fconst | |- ( A X. { 0 } ) : A --> { 0 } |
| 23 | fdm | |- ( ( A X. { 0 } ) : A --> { 0 } -> dom ( A X. { 0 } ) = A ) |
|
| 24 | 22 23 | mp1i | |- ( A e. dom vol -> dom ( A X. { 0 } ) = A ) |
| 25 | 21 | fvconst2 | |- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 26 | 25 | adantl | |- ( ( A e. dom vol /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 27 | 19 20 24 26 | isibl | |- ( A e. dom vol -> ( ( A X. { 0 } ) e. L^1 <-> ( ( A X. { 0 } ) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) ) ) |
| 28 | 3 18 27 | mpbir2and | |- ( A e. dom vol -> ( A X. { 0 } ) e. L^1 ) |