This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the modular law pmod1i that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| hlmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| hlmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| hlmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| hlmod.f | ⊢ 𝐹 = ( pmap ‘ 𝐾 ) | ||
| hlmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | hlmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | hlmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | hlmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | hlmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | hlmod.f | ⊢ 𝐹 = ( pmap ‘ 𝐾 ) | |
| 6 | hlmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 7 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝐾 ∈ Lat ) |
| 9 | simp21 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simp22 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑌 ∈ 𝐵 ) | |
| 11 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 13 | simp23 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑍 ∈ 𝐵 ) | |
| 14 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) |
| 15 | 8 12 13 14 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) |
| 16 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) |
| 17 | 8 10 13 16 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) |
| 18 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ∈ 𝐵 ) |
| 19 | 8 9 17 18 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ∈ 𝐵 ) |
| 20 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝐾 ∈ HL ) | |
| 21 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 22 | 1 21 5 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 23 | 20 9 22 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 24 | 1 21 5 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 25 | 20 10 24 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 26 | eqid | ⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) | |
| 27 | 1 26 5 | pmapsub | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
| 28 | 8 13 27 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
| 29 | simp3l | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → 𝑋 ≤ 𝑍 ) | |
| 30 | 1 2 5 | pmaple | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) ) |
| 31 | 20 9 13 30 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) ) |
| 32 | 29 31 | mpbid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) |
| 33 | 21 26 6 | pmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) ) → ( ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) ) |
| 34 | 33 | 3impia | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑍 ) ∈ ( PSubSp ‘ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑍 ) ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 35 | 20 23 25 28 32 34 | syl131anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 36 | 1 4 21 5 | pmapmeet | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
| 37 | 20 12 13 36 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
| 38 | simp3r | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) | |
| 39 | 38 | ineq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
| 40 | 37 39 | eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
| 41 | 1 4 21 5 | pmapmeet | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
| 42 | 20 10 13 41 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( ( 𝐹 ‘ 𝑌 ) ∩ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 44 | 35 40 43 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) ) |
| 45 | 1 3 5 6 | pmapjoin | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
| 46 | 8 9 17 45 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( 𝑌 ∧ 𝑍 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
| 47 | 44 46 | eqsstrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |
| 48 | 1 2 5 | pmaple | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ∧ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ≤ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ↔ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) ) |
| 49 | 20 15 19 48 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ≤ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ↔ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ⊆ ( 𝐹 ‘ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) ) |
| 50 | 47 49 | mpbird | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ≤ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) |
| 51 | 1 2 3 4 | mod1ile | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 52 | 51 | 3impia | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
| 53 | 8 9 10 13 29 52 | syl131anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
| 54 | 1 2 8 15 19 50 53 | latasymd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) |
| 55 | 54 | 3expia | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑍 ∧ ( 𝐹 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ) ) |