This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| pmod.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| pmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝑋 ⊆ 𝑍 → ( ( 𝑋 + 𝑌 ) ∩ 𝑍 ) = ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | pmod.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | pmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 6 | 4 5 1 2 3 | pmodlem2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ∧ 𝑋 ⊆ 𝑍 ) → ( ( 𝑋 + 𝑌 ) ∩ 𝑍 ) ⊆ ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( ( 𝑋 + 𝑌 ) ∩ 𝑍 ) ⊆ ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ) |
| 8 | inss1 | ⊢ ( 𝑌 ∩ 𝑍 ) ⊆ 𝑌 | |
| 9 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → 𝐾 ∈ HL ) | |
| 10 | simplr2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑌 ⊆ 𝐴 ) | |
| 11 | simplr1 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑋 ⊆ 𝐴 ) | |
| 12 | 1 3 | paddss2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( ( 𝑌 ∩ 𝑍 ) ⊆ 𝑌 → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑋 + 𝑌 ) ) ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( ( 𝑌 ∩ 𝑍 ) ⊆ 𝑌 → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑋 + 𝑌 ) ) ) |
| 14 | 8 13 | mpi | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑋 + 𝑌 ) ) |
| 15 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝐾 ∈ HL ) | |
| 16 | 1 2 | psubssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆 ) → 𝑍 ⊆ 𝐴 ) |
| 17 | 16 | 3ad2antr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑍 ⊆ 𝐴 ) |
| 18 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 19 | ssinss1 | ⊢ ( 𝑌 ⊆ 𝐴 → ( 𝑌 ∩ 𝑍 ) ⊆ 𝐴 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝑌 ∩ 𝑍 ) ⊆ 𝐴 ) |
| 21 | 1 3 | paddss1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ ( 𝑌 ∩ 𝑍 ) ⊆ 𝐴 ) → ( 𝑋 ⊆ 𝑍 → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ) ) |
| 22 | 15 17 20 21 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝑋 ⊆ 𝑍 → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ) |
| 24 | simplr3 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑍 ∈ 𝑆 ) | |
| 25 | 9 24 16 | syl2anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑍 ⊆ 𝐴 ) |
| 26 | inss2 | ⊢ ( 𝑌 ∩ 𝑍 ) ⊆ 𝑍 | |
| 27 | 1 3 | paddss2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 ∩ 𝑍 ) ⊆ 𝑍 → ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| 28 | 26 27 | mpi | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑍 + 𝑍 ) ) |
| 29 | 9 25 25 28 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( 𝑍 + 𝑍 ) ) |
| 30 | 2 3 | paddidm | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆 ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 31 | 9 24 30 | syl2anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 32 | 29 31 | sseqtrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑍 + ( 𝑌 ∩ 𝑍 ) ) ⊆ 𝑍 ) |
| 33 | 23 32 | sstrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ 𝑍 ) |
| 34 | 14 33 | ssind | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) ∩ 𝑍 ) ) |
| 35 | 7 34 | eqssd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) ∧ 𝑋 ⊆ 𝑍 ) → ( ( 𝑋 + 𝑌 ) ∩ 𝑍 ) = ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ) |
| 36 | 35 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝑋 ⊆ 𝑍 → ( ( 𝑋 + 𝑌 ) ∩ 𝑍 ) = ( 𝑋 + ( 𝑌 ∩ 𝑍 ) ) ) ) |