This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The weak direction of the modular law (e.g., pmod1i , atmod1i1 ) that holds in any lattice. (Contributed by NM, 11-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| modle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| modle.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| modle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | mod1ile | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | modle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | modle.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | modle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | simpll | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝐾 ∈ Lat ) | |
| 6 | simplr1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simplr2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 10 | simpr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) | |
| 11 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 12 | 5 6 7 11 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 13 | simplr3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝑍 ∈ 𝐵 ) | |
| 14 | 1 2 4 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≤ 𝑍 ) ↔ 𝑋 ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 15 | 5 6 12 13 14 | syl13anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≤ 𝑍 ) ↔ 𝑋 ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 16 | 9 10 15 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → 𝑋 ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
| 17 | 1 2 3 4 | latmlej12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑌 ∧ 𝑍 ) ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 18 | 5 7 13 6 17 | syl13anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑌 ∧ 𝑍 ) ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 19 | 1 2 4 | latmle2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑍 ) ≤ 𝑍 ) |
| 20 | 5 7 13 19 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑌 ∧ 𝑍 ) ≤ 𝑍 ) |
| 21 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) |
| 22 | 5 7 13 21 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ) |
| 23 | 1 2 4 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑌 ∧ 𝑍 ) ≤ ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑌 ∧ 𝑍 ) ≤ 𝑍 ) ↔ ( 𝑌 ∧ 𝑍 ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 24 | 5 22 12 13 23 | syl13anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( ( ( 𝑌 ∧ 𝑍 ) ≤ ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑌 ∧ 𝑍 ) ≤ 𝑍 ) ↔ ( 𝑌 ∧ 𝑍 ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 25 | 18 20 24 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑌 ∧ 𝑍 ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
| 26 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) |
| 27 | 5 12 13 26 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) |
| 28 | 1 2 3 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑍 ) ∈ 𝐵 ∧ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∧ ( 𝑌 ∧ 𝑍 ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ↔ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 29 | 5 6 22 27 28 | syl13anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( ( 𝑋 ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∧ ( 𝑌 ∧ 𝑍 ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ↔ ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |
| 30 | 16 25 29 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 → ( 𝑋 ∨ ( 𝑌 ∧ 𝑍 ) ) ≤ ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ) ) |