This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality from lattice ordering. ( eqssd analog.) (Contributed by NM, 18-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latasymd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latasymd.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latasymd.3 | ⊢ ( 𝜑 → 𝐾 ∈ Lat ) | ||
| latasymd.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| latasymd.5 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| latasymd.6 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| latasymd.7 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) | ||
| Assertion | latasymd | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latasymd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latasymd.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latasymd.3 | ⊢ ( 𝜑 → 𝐾 ∈ Lat ) | |
| 4 | latasymd.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | latasymd.5 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | latasymd.6 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 7 | latasymd.7 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) | |
| 8 | 1 2 | latasymb | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 9 | 3 4 5 8 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 10 | 6 7 9 | mpbi2and | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |