This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapsub.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapsub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| pmapsub.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapsub | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapsub.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapsub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | pmapsub.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 6 | 1 4 5 3 | pmapval | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) |
| 7 | breq1 | ⊢ ( 𝑐 = 𝑝 → ( 𝑐 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) | |
| 8 | 7 | elrab | ⊢ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ↔ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 9 | 1 5 | atbase | ⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
| 10 | 9 | anim1i | ⊢ ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑝 ∈ 𝐵 ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 11 | 8 10 | sylbi | ⊢ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } → ( 𝑝 ∈ 𝐵 ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 12 | breq1 | ⊢ ( 𝑐 = 𝑞 → ( 𝑐 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) | |
| 13 | 12 | elrab | ⊢ ( 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ↔ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 14 | 1 5 | atbase | ⊢ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ 𝐵 ) |
| 15 | 14 | anim1i | ⊢ ( ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑞 ∈ 𝐵 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 16 | 13 15 | sylbi | ⊢ ( 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } → ( 𝑞 ∈ 𝐵 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 17 | 11 16 | anim12i | ⊢ ( ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) → ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 18 | an4 | ⊢ ( ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ↔ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) | |
| 19 | 17 18 | sylib | ⊢ ( ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) → ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 20 | 19 | anim2i | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) ) |
| 21 | 1 5 | atbase | ⊢ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) → 𝑟 ∈ 𝐵 ) |
| 22 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 23 | 1 4 22 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 24 | 23 | biimpd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 25 | 24 | 3exp2 | ⊢ ( 𝐾 ∈ Lat → ( 𝑝 ∈ 𝐵 → ( 𝑞 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) ) ) ) ) |
| 26 | 25 | impd | ⊢ ( 𝐾 ∈ Lat → ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) ) ) ) |
| 27 | 26 | com23 | ⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝐵 → ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) ) ) ) |
| 28 | 27 | imp43 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) ∧ 𝑟 ∈ 𝐵 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 30 | 1 22 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) |
| 31 | 30 | 3expib | ⊢ ( 𝐾 ∈ Lat → ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) ) |
| 32 | 1 4 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑟 ∈ 𝐵 ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 33 | 32 | 3exp2 | ⊢ ( 𝐾 ∈ Lat → ( 𝑟 ∈ 𝐵 → ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) ) ) ) |
| 34 | 33 | com24 | ⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝐵 → ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 → ( 𝑟 ∈ 𝐵 → ( ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) ) ) ) |
| 35 | 31 34 | syl5d | ⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝐵 → ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑟 ∈ 𝐵 → ( ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) ) ) ) |
| 36 | 35 | imp41 | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 37 | 36 | adantlrr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( le ‘ 𝐾 ) 𝑋 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 38 | 29 37 | mpan2d | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ∧ ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) ∧ 𝑟 ∈ 𝐵 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 39 | 20 21 38 | syl2an | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 40 | simpr | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) | |
| 41 | 39 40 | jctild | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 42 | breq1 | ⊢ ( 𝑐 = 𝑟 → ( 𝑐 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) | |
| 43 | 42 | elrab | ⊢ ( 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ↔ ( 𝑟 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑟 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 44 | 41 43 | imbitrrdi | ⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ∧ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∧ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) → ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) |
| 46 | 45 | ralrimivva | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ∀ 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) |
| 47 | ssrab2 | ⊢ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ⊆ ( Atoms ‘ 𝐾 ) | |
| 48 | 46 47 | jctil | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ) |
| 49 | 4 22 5 2 | ispsubsp | ⊢ ( 𝐾 ∈ Lat → ( { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∈ 𝑆 ↔ ( { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∈ 𝑆 ↔ ( { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑞 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ) ) ) ) |
| 51 | 48 50 | mpbird | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → { 𝑐 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑐 ( le ‘ 𝐾 ) 𝑋 } ∈ 𝑆 ) |
| 52 | 6 51 | eqeltrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝑆 ) |