This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapmeet.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapmeet.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| pmapmeet.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapmeet.p | ⊢ 𝑃 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapmeet | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑃 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝑃 ‘ 𝑋 ) ∩ ( 𝑃 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapmeet.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapmeet.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | pmapmeet.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapmeet.p | ⊢ 𝑃 = ( pmap ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 6 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) | |
| 7 | simp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simp3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | 5 2 6 7 8 | meetval | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑃 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( 𝑃 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) ) |
| 11 | prssi | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 𝑋 , 𝑌 } ⊆ 𝐵 ) | |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 𝑋 , 𝑌 } ⊆ 𝐵 ) |
| 13 | prnzg | ⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 , 𝑌 } ≠ ∅ ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 𝑋 , 𝑌 } ≠ ∅ ) |
| 15 | 1 5 4 | pmapglb | ⊢ ( ( 𝐾 ∈ HL ∧ { 𝑋 , 𝑌 } ⊆ 𝐵 ∧ { 𝑋 , 𝑌 } ≠ ∅ ) → ( 𝑃 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝑃 ‘ 𝑥 ) ) |
| 16 | 6 12 14 15 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑃 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝑃 ‘ 𝑥 ) ) |
| 17 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑋 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑌 ) ) | |
| 19 | 17 18 | iinxprg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝑃 ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑋 ) ∩ ( 𝑃 ‘ 𝑌 ) ) ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝑃 ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑋 ) ∩ ( 𝑃 ‘ 𝑌 ) ) ) |
| 21 | 10 16 20 | 3eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑃 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝑃 ‘ 𝑋 ) ∩ ( 𝑃 ‘ 𝑌 ) ) ) |