This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space is a complex vector space. Vector addition is +h , and scalar product is .h . (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hilvc | ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 2 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 3 | 2 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 4 | ax-hfvmul | ⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ | |
| 5 | ax-hvmulid | ⊢ ( 𝑥 ∈ ℋ → ( 1 ·ℎ 𝑥 ) = 𝑥 ) | |
| 6 | ax-hvdistr1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑦 ·ℎ 𝑧 ) ) ) | |
| 7 | ax-hvdistr2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ·ℎ 𝑥 ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) | |
| 8 | ax-hvmulass | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 · 𝑧 ) ·ℎ 𝑥 ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) | |
| 9 | eqid | ⊢ 〈 +ℎ , ·ℎ 〉 = 〈 +ℎ , ·ℎ 〉 | |
| 10 | 1 3 4 5 6 7 8 9 | isvciOLD | ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |