This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhcn.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| hhcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | hhcno | ⊢ ContOp = ( 𝐽 Cn 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcn.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| 2 | hhcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | df-rab | ⊢ { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } = { 𝑡 ∣ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) } | |
| 4 | df-cnop | ⊢ ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } | |
| 5 | 1 | hilmetdval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 𝐷 𝑤 ) = ( normℎ ‘ ( 𝑥 −ℎ 𝑤 ) ) ) |
| 6 | normsub | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 −ℎ 𝑤 ) ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) | |
| 7 | 5 6 | eqtrd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 𝐷 𝑤 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
| 8 | 7 | adantll | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 𝐷 𝑤 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
| 9 | 8 | breq1d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 𝐷 𝑤 ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 ) ) |
| 10 | ffvelcdm | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑡 ‘ 𝑥 ) ∈ ℋ ) | |
| 11 | ffvelcdm | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑡 ‘ 𝑤 ) ∈ ℋ ) | |
| 12 | 10 11 | anim12dan | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑡 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℋ ) ) |
| 13 | 1 | hilmetdval | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℋ ) → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) = ( normℎ ‘ ( ( 𝑡 ‘ 𝑥 ) −ℎ ( 𝑡 ‘ 𝑤 ) ) ) ) |
| 14 | normsub | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℋ ) → ( normℎ ‘ ( ( 𝑡 ‘ 𝑥 ) −ℎ ( 𝑡 ‘ 𝑤 ) ) ) = ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) ) | |
| 15 | 13 14 | eqtrd | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℋ ) → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) = ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 16 | 12 15 | syl | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) = ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 17 | 16 | anassrs | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) = ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 18 | 17 | breq1d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 19 | 9 18 | imbi12d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 20 | 19 | ralbidva | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 21 | 20 | rexbidv | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 22 | 21 | ralbidv | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 23 | 22 | ralbidva | ⊢ ( 𝑡 : ℋ ⟶ ℋ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 24 | 23 | pm5.32i | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 25 | 1 | hilxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℋ ) |
| 26 | 2 2 | metcn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℋ ) ∧ 𝐷 ∈ ( ∞Met ‘ ℋ ) ) → ( 𝑡 ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 27 | 25 25 26 | mp2an | ⊢ ( 𝑡 ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 28 | ax-hilex | ⊢ ℋ ∈ V | |
| 29 | 28 28 | elmap | ⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↔ 𝑡 : ℋ ⟶ ℋ ) |
| 30 | 29 | anbi1i | ⊢ ( ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 31 | 24 27 30 | 3bitr4i | ⊢ ( 𝑡 ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 32 | 31 | eqabi | ⊢ ( 𝐽 Cn 𝐽 ) = { 𝑡 ∣ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) } |
| 33 | 3 4 32 | 3eqtr4i | ⊢ ContOp = ( 𝐽 Cn 𝐽 ) |