This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of continuous operators on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnop | ⊢ ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccop | ⊢ ContOp | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | vy | ⊢ 𝑦 | |
| 7 | crp | ⊢ ℝ+ | |
| 8 | vz | ⊢ 𝑧 | |
| 9 | vw | ⊢ 𝑤 | |
| 10 | cno | ⊢ normℎ | |
| 11 | 9 | cv | ⊢ 𝑤 |
| 12 | cmv | ⊢ −ℎ | |
| 13 | 5 | cv | ⊢ 𝑥 |
| 14 | 11 13 12 | co | ⊢ ( 𝑤 −ℎ 𝑥 ) |
| 15 | 14 10 | cfv | ⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) |
| 16 | clt | ⊢ < | |
| 17 | 8 | cv | ⊢ 𝑧 |
| 18 | 15 17 16 | wbr | ⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 |
| 19 | 1 | cv | ⊢ 𝑡 |
| 20 | 11 19 | cfv | ⊢ ( 𝑡 ‘ 𝑤 ) |
| 21 | 13 19 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) |
| 22 | 20 21 12 | co | ⊢ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) |
| 23 | 22 10 | cfv | ⊢ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) |
| 24 | 6 | cv | ⊢ 𝑦 |
| 25 | 23 24 16 | wbr | ⊢ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 |
| 26 | 18 25 | wi | ⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 27 | 26 9 2 | wral | ⊢ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 28 | 27 8 7 | wrex | ⊢ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 29 | 28 6 7 | wral | ⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 30 | 29 5 2 | wral | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 31 | 30 1 4 | crab | ⊢ { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
| 32 | 0 31 | wceq | ⊢ ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |