This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhcn.1 | |- D = ( normh o. -h ) |
|
| hhcn.2 | |- J = ( MetOpen ` D ) |
||
| Assertion | hhcno | |- ContOp = ( J Cn J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcn.1 | |- D = ( normh o. -h ) |
|
| 2 | hhcn.2 | |- J = ( MetOpen ` D ) |
|
| 3 | df-rab | |- { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } = { t | ( t e. ( ~H ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) } |
|
| 4 | df-cnop | |- ContOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |
|
| 5 | 1 | hilmetdval | |- ( ( x e. ~H /\ w e. ~H ) -> ( x D w ) = ( normh ` ( x -h w ) ) ) |
| 6 | normsub | |- ( ( x e. ~H /\ w e. ~H ) -> ( normh ` ( x -h w ) ) = ( normh ` ( w -h x ) ) ) |
|
| 7 | 5 6 | eqtrd | |- ( ( x e. ~H /\ w e. ~H ) -> ( x D w ) = ( normh ` ( w -h x ) ) ) |
| 8 | 7 | adantll | |- ( ( ( t : ~H --> ~H /\ x e. ~H ) /\ w e. ~H ) -> ( x D w ) = ( normh ` ( w -h x ) ) ) |
| 9 | 8 | breq1d | |- ( ( ( t : ~H --> ~H /\ x e. ~H ) /\ w e. ~H ) -> ( ( x D w ) < z <-> ( normh ` ( w -h x ) ) < z ) ) |
| 10 | ffvelcdm | |- ( ( t : ~H --> ~H /\ x e. ~H ) -> ( t ` x ) e. ~H ) |
|
| 11 | ffvelcdm | |- ( ( t : ~H --> ~H /\ w e. ~H ) -> ( t ` w ) e. ~H ) |
|
| 12 | 10 11 | anim12dan | |- ( ( t : ~H --> ~H /\ ( x e. ~H /\ w e. ~H ) ) -> ( ( t ` x ) e. ~H /\ ( t ` w ) e. ~H ) ) |
| 13 | 1 | hilmetdval | |- ( ( ( t ` x ) e. ~H /\ ( t ` w ) e. ~H ) -> ( ( t ` x ) D ( t ` w ) ) = ( normh ` ( ( t ` x ) -h ( t ` w ) ) ) ) |
| 14 | normsub | |- ( ( ( t ` x ) e. ~H /\ ( t ` w ) e. ~H ) -> ( normh ` ( ( t ` x ) -h ( t ` w ) ) ) = ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) ) |
|
| 15 | 13 14 | eqtrd | |- ( ( ( t ` x ) e. ~H /\ ( t ` w ) e. ~H ) -> ( ( t ` x ) D ( t ` w ) ) = ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) ) |
| 16 | 12 15 | syl | |- ( ( t : ~H --> ~H /\ ( x e. ~H /\ w e. ~H ) ) -> ( ( t ` x ) D ( t ` w ) ) = ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) ) |
| 17 | 16 | anassrs | |- ( ( ( t : ~H --> ~H /\ x e. ~H ) /\ w e. ~H ) -> ( ( t ` x ) D ( t ` w ) ) = ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) ) |
| 18 | 17 | breq1d | |- ( ( ( t : ~H --> ~H /\ x e. ~H ) /\ w e. ~H ) -> ( ( ( t ` x ) D ( t ` w ) ) < y <-> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) |
| 19 | 9 18 | imbi12d | |- ( ( ( t : ~H --> ~H /\ x e. ~H ) /\ w e. ~H ) -> ( ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) <-> ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 20 | 19 | ralbidva | |- ( ( t : ~H --> ~H /\ x e. ~H ) -> ( A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) <-> A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 21 | 20 | rexbidv | |- ( ( t : ~H --> ~H /\ x e. ~H ) -> ( E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) <-> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 22 | 21 | ralbidv | |- ( ( t : ~H --> ~H /\ x e. ~H ) -> ( A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) <-> A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 23 | 22 | ralbidva | |- ( t : ~H --> ~H -> ( A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) <-> A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 24 | 23 | pm5.32i | |- ( ( t : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) ) <-> ( t : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 25 | 1 | hilxmet | |- D e. ( *Met ` ~H ) |
| 26 | 2 2 | metcn | |- ( ( D e. ( *Met ` ~H ) /\ D e. ( *Met ` ~H ) ) -> ( t e. ( J Cn J ) <-> ( t : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) ) ) ) |
| 27 | 25 25 26 | mp2an | |- ( t e. ( J Cn J ) <-> ( t : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) D ( t ` w ) ) < y ) ) ) |
| 28 | ax-hilex | |- ~H e. _V |
|
| 29 | 28 28 | elmap | |- ( t e. ( ~H ^m ~H ) <-> t : ~H --> ~H ) |
| 30 | 29 | anbi1i | |- ( ( t e. ( ~H ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) <-> ( t : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 31 | 24 27 30 | 3bitr4i | |- ( t e. ( J Cn J ) <-> ( t e. ( ~H ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) ) |
| 32 | 31 | eqabi | |- ( J Cn J ) = { t | ( t e. ( ~H ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) ) } |
| 33 | 3 4 32 | 3eqtr4i | |- ContOp = ( J Cn J ) |