This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmscl.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmscl.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmscl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmscl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| haustsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| haustsms.h | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) | ||
| Assertion | haustsms | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmscl.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsmscl.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 4 | tsmscl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | tsmscl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | haustsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 7 | haustsms.h | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) | |
| 8 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 9 | eqid | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) = ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) | |
| 10 | eqid | ⊢ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) = ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) | |
| 11 | 8 9 10 4 | tsmsfbas | ⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 12 | fgcl | ⊢ ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 14 | 1 8 2 4 5 | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝐵 ) |
| 15 | 1 6 | tpsuni | ⊢ ( 𝐺 ∈ TopSp → 𝐵 = ∪ 𝐽 ) |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐵 = ∪ 𝐽 ) |
| 18 | 14 17 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ ∪ 𝐽 ) |
| 19 | 18 | fmpttd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ ∪ 𝐽 ) |
| 20 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 21 | 20 | hausflf | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ ∪ 𝐽 ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 22 | 7 13 19 21 | syl3anc | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 23 | 1 6 8 10 2 4 5 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 24 | 23 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑥 ∈ ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) ) |
| 25 | 24 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) ) |
| 26 | 22 25 | mpbird | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |