This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmscl.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmscl.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmscl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmscl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| haustsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| haustsms.h | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) | ||
| Assertion | haustsms2 | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmscl.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsmscl.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 4 | tsmscl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | tsmscl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | haustsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 7 | haustsms.h | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) | |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 9 | 1 2 3 4 5 6 7 | haustsms | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 11 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) ) | |
| 12 | 11 | moi2 | ⊢ ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) ) → 𝑥 = 𝑋 ) |
| 13 | 12 | ancom2s | ⊢ ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) → 𝑥 = 𝑋 ) |
| 14 | 13 | expr | ⊢ ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 = 𝑋 ) ) |
| 15 | 8 10 8 14 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 = 𝑋 ) ) |
| 16 | velsn | ⊢ ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 ) | |
| 17 | 15 16 | imbitrrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ { 𝑋 } ) ) |
| 18 | 17 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) ⊆ { 𝑋 } ) |
| 19 | snssi | ⊢ ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → { 𝑋 } ⊆ ( 𝐺 tsums 𝐹 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → { 𝑋 } ⊆ ( 𝐺 tsums 𝐹 ) ) |
| 21 | 18 20 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) |
| 22 | 21 | ex | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) ) |