This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscl.b | |- B = ( Base ` G ) |
|
| tsmscl.1 | |- ( ph -> G e. CMnd ) |
||
| tsmscl.2 | |- ( ph -> G e. TopSp ) |
||
| tsmscl.a | |- ( ph -> A e. V ) |
||
| tsmscl.f | |- ( ph -> F : A --> B ) |
||
| haustsms.j | |- J = ( TopOpen ` G ) |
||
| haustsms.h | |- ( ph -> J e. Haus ) |
||
| Assertion | haustsms | |- ( ph -> E* x x e. ( G tsums F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscl.b | |- B = ( Base ` G ) |
|
| 2 | tsmscl.1 | |- ( ph -> G e. CMnd ) |
|
| 3 | tsmscl.2 | |- ( ph -> G e. TopSp ) |
|
| 4 | tsmscl.a | |- ( ph -> A e. V ) |
|
| 5 | tsmscl.f | |- ( ph -> F : A --> B ) |
|
| 6 | haustsms.j | |- J = ( TopOpen ` G ) |
|
| 7 | haustsms.h | |- ( ph -> J e. Haus ) |
|
| 8 | eqid | |- ( ~P A i^i Fin ) = ( ~P A i^i Fin ) |
|
| 9 | eqid | |- ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) = ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) |
|
| 10 | eqid | |- ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) = ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) |
|
| 11 | 8 9 10 4 | tsmsfbas | |- ( ph -> ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) e. ( fBas ` ( ~P A i^i Fin ) ) ) |
| 12 | fgcl | |- ( ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) e. ( fBas ` ( ~P A i^i Fin ) ) -> ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
| 14 | 1 8 2 4 5 | tsmslem1 | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` z ) ) e. B ) |
| 15 | 1 6 | tpsuni | |- ( G e. TopSp -> B = U. J ) |
| 16 | 3 15 | syl | |- ( ph -> B = U. J ) |
| 17 | 16 | adantr | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> B = U. J ) |
| 18 | 14 17 | eleqtrd | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` z ) ) e. U. J ) |
| 19 | 18 | fmpttd | |- ( ph -> ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) : ( ~P A i^i Fin ) --> U. J ) |
| 20 | eqid | |- U. J = U. J |
|
| 21 | 20 | hausflf | |- ( ( J e. Haus /\ ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) /\ ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) : ( ~P A i^i Fin ) --> U. J ) -> E* x x e. ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 22 | 7 13 19 21 | syl3anc | |- ( ph -> E* x x e. ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 23 | 1 6 8 10 2 4 5 | tsmsval | |- ( ph -> ( G tsums F ) = ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 24 | 23 | eleq2d | |- ( ph -> ( x e. ( G tsums F ) <-> x e. ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) ) |
| 25 | 24 | mobidv | |- ( ph -> ( E* x x e. ( G tsums F ) <-> E* x x e. ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) ) |
| 26 | 22 25 | mpbird | |- ( ph -> E* x x e. ( G tsums F ) ) |