This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hausflf.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hausflf | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hausflf.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hausflimi | ⊢ ( 𝐽 ∈ Haus → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 4 | haustop | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) | |
| 5 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 4 5 | sylib | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 9 | 8 | eleq2d | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ 𝑥 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
| 10 | 9 | mobidv | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
| 11 | 3 10 | mpbird | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |