This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is a Hausdorff space, then the cardinality of the closure of a set A is bounded by the double powerset of A . In particular, a Hausdorff space with a dense subset A has cardinality at most ~P ~P A , and a separable Hausdorff space has cardinality at most ~P ~P NN . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hauspwpwf1.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hauspwpwdom | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwpwf1.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | fvexd | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V ) | |
| 3 | haustop | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) | |
| 4 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐽 ∈ Haus → 𝑋 ∈ 𝐽 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 7 | simpr | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 8 | 6 7 | ssexd | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 9 | pwexg | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) | |
| 10 | pwexg | ⊢ ( 𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → 𝒫 𝒫 𝐴 ∈ V ) |
| 12 | eqid | ⊢ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑧 = ( 𝑦 ∩ 𝐴 ) ) } ) = ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑧 = ( 𝑦 ∩ 𝐴 ) ) } ) | |
| 13 | 1 12 | hauspwpwf1 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑧 = ( 𝑦 ∩ 𝐴 ) ) } ) : ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) –1-1→ 𝒫 𝒫 𝐴 ) |
| 14 | f1dom2g | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑧 = ( 𝑦 ∩ 𝐴 ) ) } ) : ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) –1-1→ 𝒫 𝒫 𝐴 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝒫 𝐴 ) | |
| 15 | 2 11 13 14 | syl3anc | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝒫 𝐴 ) |