This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of TakeutiZaring p. 92. (Contributed by NM, 23-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imadomg | ⊢ ( 𝐴 ∈ 𝐵 → ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 2 | resfunexg | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐹 ↾ 𝐴 ) ∈ V ) | |
| 3 | 2 | dmexd | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝐵 ) → dom ( 𝐹 ↾ 𝐴 ) ∈ V ) |
| 4 | funres | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) | |
| 5 | funforn | ⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 7 | 6 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 8 | fodomg | ⊢ ( dom ( 𝐹 ↾ 𝐴 ) ∈ V → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) → ran ( 𝐹 ↾ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) ) | |
| 9 | 3 7 8 | sylc | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝐵 ) → ran ( 𝐹 ↾ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
| 10 | 1 9 | eqbrtrid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) |
| 11 | 10 | expcom | ⊢ ( 𝐴 ∈ 𝐵 → ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ) ) |
| 12 | dmres | ⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) | |
| 13 | inss1 | ⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 | |
| 14 | 12 13 | eqsstri | ⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
| 15 | ssdomg | ⊢ ( 𝐴 ∈ 𝐵 → ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) ) | |
| 16 | 14 15 | mpi | ⊢ ( 𝐴 ∈ 𝐵 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) |
| 17 | domtr | ⊢ ( ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) | |
| 18 | 16 17 | sylan2 | ⊢ ( ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 19 | 18 | expcom | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 “ 𝐴 ) ≼ dom ( 𝐹 ↾ 𝐴 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
| 20 | 11 19 | syld | ⊢ ( 𝐴 ∈ 𝐵 → ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |