This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elgch | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gch | ⊢ GCH = ( Fin ∪ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ GCH ↔ 𝐴 ∈ ( Fin ∪ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ) ) |
| 3 | elun | ⊢ ( 𝐴 ∈ ( Fin ∪ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ) ↔ ( 𝐴 ∈ Fin ∨ 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ) ) |
| 5 | breq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥 ) ) | |
| 6 | pweq | ⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) | |
| 7 | 6 | breq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ≺ 𝒫 𝑦 ↔ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) ↔ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) ↔ ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 10 | 9 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) ↔ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 11 | 10 | elabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ↔ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 12 | 11 | orbi2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∈ Fin ∨ 𝐴 ∈ { 𝑦 ∣ ∀ 𝑥 ¬ ( 𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦 ) } ) ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |
| 13 | 4 12 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |