This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If ( alephsuc A ) is equinumerous to the powerset of ( alephA ) , then ( alephA ) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephgch | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ GCH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephnbtwn2 | ⊢ ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 2 | sdomen2 | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ↔ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) | |
| 3 | 2 | anbi2d | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ) ↔ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) |
| 4 | 1 3 | mtbii | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
| 5 | 4 | alrimiv | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
| 6 | 5 | olcd | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ∈ Fin ∨ ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) |
| 7 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 8 | elgch | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ( ℵ ‘ 𝐴 ) ∈ GCH ↔ ( ( ℵ ‘ 𝐴 ) ∈ Fin ∨ ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ GCH ↔ ( ( ℵ ‘ 𝐴 ) ∈ Fin ∨ ∀ 𝑥 ¬ ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) ) |
| 10 | 6 9 | sylibr | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ GCH ) |