This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the property of being a cardinal number. Definition 8 of Suppes p. 225. (Contributed by Mario Carneiro, 15-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscard2 | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
| 2 | eleq1 | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) | |
| 3 | 1 2 | mpbii | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
| 4 | eqss | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( ( card ‘ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( card ‘ 𝐴 ) ) ) | |
| 5 | cardonle | ⊢ ( 𝐴 ∈ On → ( card ‘ 𝐴 ) ⊆ 𝐴 ) | |
| 6 | 5 | biantrurd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( card ‘ 𝐴 ) ↔ ( ( card ‘ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( card ‘ 𝐴 ) ) ) ) |
| 7 | 4 6 | bitr4id | ⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ⊆ ( card ‘ 𝐴 ) ) ) |
| 8 | oncardval | ⊢ ( 𝐴 ∈ On → ( card ‘ 𝐴 ) = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) | |
| 9 | 8 | sseq2d | ⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( card ‘ 𝐴 ) ↔ 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) ) |
| 10 | 7 9 | bitrd | ⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) ) |
| 11 | ssint | ⊢ ( 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ∀ 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } 𝐴 ⊆ 𝑥 ) | |
| 12 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴 ) ) | |
| 13 | 12 | elrab | ⊢ ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) ) |
| 14 | ensymb | ⊢ ( 𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥 ) | |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) |
| 16 | 13 15 | bitri | ⊢ ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) |
| 17 | 16 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } → 𝐴 ⊆ 𝑥 ) ↔ ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → 𝐴 ⊆ 𝑥 ) ) |
| 18 | impexp | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ On → ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) | |
| 19 | 17 18 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ On → ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |
| 20 | 19 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } 𝐴 ⊆ 𝑥 ↔ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
| 21 | 11 20 | bitri | ⊢ ( 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
| 22 | 10 21 | bitrdi | ⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |
| 23 | 3 22 | biadanii | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |