This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum, more general version of gsumunsnd . (Contributed by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzunsnd.b | |- B = ( Base ` G ) |
|
| gsumzunsnd.p | |- .+ = ( +g ` G ) |
||
| gsumzunsnd.z | |- Z = ( Cntz ` G ) |
||
| gsumzunsnd.f | |- F = ( k e. ( A u. { M } ) |-> X ) |
||
| gsumzunsnd.g | |- ( ph -> G e. Mnd ) |
||
| gsumzunsnd.a | |- ( ph -> A e. Fin ) |
||
| gsumzunsnd.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzunsnd.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsumzunsnd.m | |- ( ph -> M e. V ) |
||
| gsumzunsnd.d | |- ( ph -> -. M e. A ) |
||
| gsumzunsnd.y | |- ( ph -> Y e. B ) |
||
| gsumzunsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
||
| Assertion | gsumzunsnd | |- ( ph -> ( G gsum F ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzunsnd.b | |- B = ( Base ` G ) |
|
| 2 | gsumzunsnd.p | |- .+ = ( +g ` G ) |
|
| 3 | gsumzunsnd.z | |- Z = ( Cntz ` G ) |
|
| 4 | gsumzunsnd.f | |- F = ( k e. ( A u. { M } ) |-> X ) |
|
| 5 | gsumzunsnd.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumzunsnd.a | |- ( ph -> A e. Fin ) |
|
| 7 | gsumzunsnd.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 8 | gsumzunsnd.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 9 | gsumzunsnd.m | |- ( ph -> M e. V ) |
|
| 10 | gsumzunsnd.d | |- ( ph -> -. M e. A ) |
|
| 11 | gsumzunsnd.y | |- ( ph -> Y e. B ) |
|
| 12 | gsumzunsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
|
| 13 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 14 | snfi | |- { M } e. Fin |
|
| 15 | unfi | |- ( ( A e. Fin /\ { M } e. Fin ) -> ( A u. { M } ) e. Fin ) |
|
| 16 | 6 14 15 | sylancl | |- ( ph -> ( A u. { M } ) e. Fin ) |
| 17 | elun | |- ( k e. ( A u. { M } ) <-> ( k e. A \/ k e. { M } ) ) |
|
| 18 | elsni | |- ( k e. { M } -> k = M ) |
|
| 19 | 18 12 | sylan2 | |- ( ( ph /\ k e. { M } ) -> X = Y ) |
| 20 | 11 | adantr | |- ( ( ph /\ k e. { M } ) -> Y e. B ) |
| 21 | 19 20 | eqeltrd | |- ( ( ph /\ k e. { M } ) -> X e. B ) |
| 22 | 8 21 | jaodan | |- ( ( ph /\ ( k e. A \/ k e. { M } ) ) -> X e. B ) |
| 23 | 17 22 | sylan2b | |- ( ( ph /\ k e. ( A u. { M } ) ) -> X e. B ) |
| 24 | 23 4 | fmptd | |- ( ph -> F : ( A u. { M } ) --> B ) |
| 25 | 8 | expcom | |- ( k e. A -> ( ph -> X e. B ) ) |
| 26 | 11 | adantr | |- ( ( ph /\ k = M ) -> Y e. B ) |
| 27 | 12 26 | eqeltrd | |- ( ( ph /\ k = M ) -> X e. B ) |
| 28 | 27 | expcom | |- ( k = M -> ( ph -> X e. B ) ) |
| 29 | 18 28 | syl | |- ( k e. { M } -> ( ph -> X e. B ) ) |
| 30 | 25 29 | jaoi | |- ( ( k e. A \/ k e. { M } ) -> ( ph -> X e. B ) ) |
| 31 | 17 30 | sylbi | |- ( k e. ( A u. { M } ) -> ( ph -> X e. B ) ) |
| 32 | 31 | impcom | |- ( ( ph /\ k e. ( A u. { M } ) ) -> X e. B ) |
| 33 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) |
|
| 34 | 4 16 32 33 | fsuppmptdm | |- ( ph -> F finSupp ( 0g ` G ) ) |
| 35 | disjsn | |- ( ( A i^i { M } ) = (/) <-> -. M e. A ) |
|
| 36 | 10 35 | sylibr | |- ( ph -> ( A i^i { M } ) = (/) ) |
| 37 | eqidd | |- ( ph -> ( A u. { M } ) = ( A u. { M } ) ) |
|
| 38 | 1 13 2 3 5 16 24 7 34 36 37 | gsumzsplit | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` A ) ) .+ ( G gsum ( F |` { M } ) ) ) ) |
| 39 | 4 | reseq1i | |- ( F |` A ) = ( ( k e. ( A u. { M } ) |-> X ) |` A ) |
| 40 | ssun1 | |- A C_ ( A u. { M } ) |
|
| 41 | resmpt | |- ( A C_ ( A u. { M } ) -> ( ( k e. ( A u. { M } ) |-> X ) |` A ) = ( k e. A |-> X ) ) |
|
| 42 | 40 41 | mp1i | |- ( ph -> ( ( k e. ( A u. { M } ) |-> X ) |` A ) = ( k e. A |-> X ) ) |
| 43 | 39 42 | eqtrid | |- ( ph -> ( F |` A ) = ( k e. A |-> X ) ) |
| 44 | 43 | oveq2d | |- ( ph -> ( G gsum ( F |` A ) ) = ( G gsum ( k e. A |-> X ) ) ) |
| 45 | 4 | reseq1i | |- ( F |` { M } ) = ( ( k e. ( A u. { M } ) |-> X ) |` { M } ) |
| 46 | ssun2 | |- { M } C_ ( A u. { M } ) |
|
| 47 | resmpt | |- ( { M } C_ ( A u. { M } ) -> ( ( k e. ( A u. { M } ) |-> X ) |` { M } ) = ( k e. { M } |-> X ) ) |
|
| 48 | 46 47 | mp1i | |- ( ph -> ( ( k e. ( A u. { M } ) |-> X ) |` { M } ) = ( k e. { M } |-> X ) ) |
| 49 | 45 48 | eqtrid | |- ( ph -> ( F |` { M } ) = ( k e. { M } |-> X ) ) |
| 50 | 49 | oveq2d | |- ( ph -> ( G gsum ( F |` { M } ) ) = ( G gsum ( k e. { M } |-> X ) ) ) |
| 51 | 44 50 | oveq12d | |- ( ph -> ( ( G gsum ( F |` A ) ) .+ ( G gsum ( F |` { M } ) ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) ) |
| 52 | 1 5 9 11 12 | gsumsnd | |- ( ph -> ( G gsum ( k e. { M } |-> X ) ) = Y ) |
| 53 | 52 | oveq2d | |- ( ph -> ( ( G gsum ( k e. A |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
| 54 | 38 51 53 | 3eqtrd | |- ( ph -> ( G gsum F ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |