This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumunsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumunsnd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumunsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumunsnd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsumunsnd.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsumunsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| gsumunsnd.d | ⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) | ||
| gsumunsnd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| gsumunsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) | ||
| gsumunsnfd.0 | ⊢ Ⅎ 𝑘 𝑌 | ||
| Assertion | gsumunsnfd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumunsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumunsnd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumunsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumunsnd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | gsumunsnd.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | gsumunsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 7 | gsumunsnd.d | ⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) | |
| 8 | gsumunsnd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | gsumunsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) | |
| 10 | gsumunsnfd.0 | ⊢ Ⅎ 𝑘 𝑌 | |
| 11 | snfi | ⊢ { 𝑀 } ∈ Fin | |
| 12 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑀 } ∈ Fin ) → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) | |
| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) |
| 14 | elun | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) | |
| 15 | elsni | ⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) | |
| 16 | 15 9 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 = 𝑌 ) |
| 17 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑌 ∈ 𝐵 ) |
| 18 | 16 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 ∈ 𝐵 ) |
| 19 | 5 18 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 20 | 14 19 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 21 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ 𝐴 ) | |
| 22 | 7 21 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑀 } ) = ∅ ) |
| 23 | eqidd | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) = ( 𝐴 ∪ { 𝑀 } ) ) | |
| 24 | 1 2 3 13 20 22 23 | gsummptfidmsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) ) |
| 25 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 27 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 28 | 1 26 6 8 9 27 10 | gsumsnfd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) = 𝑌 ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
| 30 | 24 29 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |