This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for properties of the set of identities of G . The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumvallem2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumvallem2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumvallem2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumvallem2.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | ||
| Assertion | gsumvallem2 | ⊢ ( 𝐺 ∈ Mnd → 𝑂 = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvallem2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumvallem2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumvallem2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumvallem2.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | |
| 5 | 1 2 3 4 | mgmidsssn0 | ⊢ ( 𝐺 ∈ Mnd → 𝑂 ⊆ { 0 } ) |
| 6 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 7 | 1 3 2 | mndlrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ) → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝐺 ∈ Mnd → ∀ 𝑦 ∈ 𝐵 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 + 𝑦 ) = ( 0 + 𝑦 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 + 𝑦 ) = 𝑦 ↔ ( 0 + 𝑦 ) = 𝑦 ) ) |
| 11 | 10 | ovanraleqv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) ) |
| 12 | 11 4 | elrab2 | ⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) ) |
| 13 | 6 8 12 | sylanbrc | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝑂 ) |
| 14 | 13 | snssd | ⊢ ( 𝐺 ∈ Mnd → { 0 } ⊆ 𝑂 ) |
| 15 | 5 14 | eqssd | ⊢ ( 𝐺 ∈ Mnd → 𝑂 = { 0 } ) |