This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for properties of the set of identities of G . The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumvallem2.b | |- B = ( Base ` G ) |
|
| gsumvallem2.z | |- .0. = ( 0g ` G ) |
||
| gsumvallem2.p | |- .+ = ( +g ` G ) |
||
| gsumvallem2.o | |- O = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
||
| Assertion | gsumvallem2 | |- ( G e. Mnd -> O = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvallem2.b | |- B = ( Base ` G ) |
|
| 2 | gsumvallem2.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumvallem2.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumvallem2.o | |- O = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
|
| 5 | 1 2 3 4 | mgmidsssn0 | |- ( G e. Mnd -> O C_ { .0. } ) |
| 6 | 1 2 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 7 | 1 3 2 | mndlrid | |- ( ( G e. Mnd /\ y e. B ) -> ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) |
| 8 | 7 | ralrimiva | |- ( G e. Mnd -> A. y e. B ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) |
| 9 | oveq1 | |- ( x = .0. -> ( x .+ y ) = ( .0. .+ y ) ) |
|
| 10 | 9 | eqeq1d | |- ( x = .0. -> ( ( x .+ y ) = y <-> ( .0. .+ y ) = y ) ) |
| 11 | 10 | ovanraleqv | |- ( x = .0. -> ( A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) <-> A. y e. B ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) ) |
| 12 | 11 4 | elrab2 | |- ( .0. e. O <-> ( .0. e. B /\ A. y e. B ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) ) |
| 13 | 6 8 12 | sylanbrc | |- ( G e. Mnd -> .0. e. O ) |
| 14 | 13 | snssd | |- ( G e. Mnd -> { .0. } C_ O ) |
| 15 | 5 14 | eqssd | |- ( G e. Mnd -> O = { .0. } ) |