This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of sequential integers has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 31-Oct-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzopth | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ↔ ( 𝑀 = 𝐽 ∧ 𝑁 = 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 3 | simpr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) | |
| 4 | 2 3 | eleqtrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑀 ∈ ( 𝐽 ... 𝐾 ) ) |
| 5 | elfzuz | ⊢ ( 𝑀 ∈ ( 𝐽 ... 𝐾 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) | |
| 6 | uzss | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) → ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝐽 ) ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝐽 ) ) |
| 8 | elfzuz2 | ⊢ ( 𝑀 ∈ ( 𝐽 ... 𝐾 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝐽 ) ) | |
| 9 | eluzfz1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝐽 ) → 𝐽 ∈ ( 𝐽 ... 𝐾 ) ) | |
| 10 | 4 8 9 | 3syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝐽 ∈ ( 𝐽 ... 𝐾 ) ) |
| 11 | 10 3 | eleqtrrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) |
| 12 | elfzuz | ⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → 𝐽 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 13 | uzss | ⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝐽 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ℤ≥ ‘ 𝐽 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 15 | 7 14 | eqssd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝐽 ) ) |
| 16 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑀 ∈ ℤ ) |
| 18 | uz11 | ⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝐽 ) ↔ 𝑀 = 𝐽 ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝐽 ) ↔ 𝑀 = 𝐽 ) ) |
| 20 | 15 19 | mpbid | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑀 = 𝐽 ) |
| 21 | eluzfz2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝐽 ) → 𝐾 ∈ ( 𝐽 ... 𝐾 ) ) | |
| 22 | 4 8 21 | 3syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝐾 ∈ ( 𝐽 ... 𝐾 ) ) |
| 23 | 22 3 | eleqtrrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
| 24 | elfzuz3 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 25 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐾 ) ) | |
| 26 | 23 24 25 | 3syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐾 ) ) |
| 27 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 29 | 28 3 | eleqtrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑁 ∈ ( 𝐽 ... 𝐾 ) ) |
| 30 | elfzuz3 | ⊢ ( 𝑁 ∈ ( 𝐽 ... 𝐾 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 31 | uzss | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) | |
| 32 | 29 30 31 | 3syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 33 | 26 32 | eqssd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 34 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 35 | 34 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑁 ∈ ℤ ) |
| 36 | uz11 | ⊢ ( 𝑁 ∈ ℤ → ( ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ↔ 𝑁 = 𝐾 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝐾 ) ↔ 𝑁 = 𝐾 ) ) |
| 38 | 33 37 | mpbid | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → 𝑁 = 𝐾 ) |
| 39 | 20 38 | jca | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) → ( 𝑀 = 𝐽 ∧ 𝑁 = 𝐾 ) ) |
| 40 | 39 | ex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) → ( 𝑀 = 𝐽 ∧ 𝑁 = 𝐾 ) ) ) |
| 41 | oveq12 | ⊢ ( ( 𝑀 = 𝐽 ∧ 𝑁 = 𝐾 ) → ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ) | |
| 42 | 40 41 | impbid1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) = ( 𝐽 ... 𝐾 ) ↔ ( 𝑀 = 𝐽 ∧ 𝑁 = 𝐾 ) ) ) |