This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumunsnd.b | |- B = ( Base ` G ) |
|
| gsumunsnd.p | |- .+ = ( +g ` G ) |
||
| gsumunsnd.g | |- ( ph -> G e. CMnd ) |
||
| gsumunsnd.a | |- ( ph -> A e. Fin ) |
||
| gsumunsnd.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsumunsnd.m | |- ( ph -> M e. V ) |
||
| gsumunsnd.d | |- ( ph -> -. M e. A ) |
||
| gsumunsnd.y | |- ( ph -> Y e. B ) |
||
| gsumunsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
||
| gsumunsnfd.0 | |- F/_ k Y |
||
| Assertion | gsumunsnfd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumunsnd.b | |- B = ( Base ` G ) |
|
| 2 | gsumunsnd.p | |- .+ = ( +g ` G ) |
|
| 3 | gsumunsnd.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsumunsnd.a | |- ( ph -> A e. Fin ) |
|
| 5 | gsumunsnd.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 6 | gsumunsnd.m | |- ( ph -> M e. V ) |
|
| 7 | gsumunsnd.d | |- ( ph -> -. M e. A ) |
|
| 8 | gsumunsnd.y | |- ( ph -> Y e. B ) |
|
| 9 | gsumunsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
|
| 10 | gsumunsnfd.0 | |- F/_ k Y |
|
| 11 | snfi | |- { M } e. Fin |
|
| 12 | unfi | |- ( ( A e. Fin /\ { M } e. Fin ) -> ( A u. { M } ) e. Fin ) |
|
| 13 | 4 11 12 | sylancl | |- ( ph -> ( A u. { M } ) e. Fin ) |
| 14 | elun | |- ( k e. ( A u. { M } ) <-> ( k e. A \/ k e. { M } ) ) |
|
| 15 | elsni | |- ( k e. { M } -> k = M ) |
|
| 16 | 15 9 | sylan2 | |- ( ( ph /\ k e. { M } ) -> X = Y ) |
| 17 | 8 | adantr | |- ( ( ph /\ k e. { M } ) -> Y e. B ) |
| 18 | 16 17 | eqeltrd | |- ( ( ph /\ k e. { M } ) -> X e. B ) |
| 19 | 5 18 | jaodan | |- ( ( ph /\ ( k e. A \/ k e. { M } ) ) -> X e. B ) |
| 20 | 14 19 | sylan2b | |- ( ( ph /\ k e. ( A u. { M } ) ) -> X e. B ) |
| 21 | disjsn | |- ( ( A i^i { M } ) = (/) <-> -. M e. A ) |
|
| 22 | 7 21 | sylibr | |- ( ph -> ( A i^i { M } ) = (/) ) |
| 23 | eqidd | |- ( ph -> ( A u. { M } ) = ( A u. { M } ) ) |
|
| 24 | 1 2 3 13 20 22 23 | gsummptfidmsplit | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) ) |
| 25 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 26 | 3 25 | syl | |- ( ph -> G e. Mnd ) |
| 27 | nfv | |- F/ k ph |
|
| 28 | 1 26 6 8 9 27 10 | gsumsnfd | |- ( ph -> ( G gsum ( k e. { M } |-> X ) ) = Y ) |
| 29 | 28 | oveq2d | |- ( ph -> ( ( G gsum ( k e. A |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
| 30 | 24 29 | eqtrd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |