This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Revised by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| gsumsnd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| gsumsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) | ||
| gsumsnfd.p | ⊢ Ⅎ 𝑘 𝜑 | ||
| gsumsnfd.c | ⊢ Ⅎ 𝑘 𝐶 | ||
| Assertion | gsumsnfd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 3 | gsumsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 4 | gsumsnd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 5 | gsumsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) | |
| 6 | gsumsnfd.p | ⊢ Ⅎ 𝑘 𝜑 | |
| 7 | gsumsnfd.c | ⊢ Ⅎ 𝑘 𝐶 | |
| 8 | elsni | ⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) | |
| 9 | 8 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝐴 = 𝐶 ) |
| 10 | 6 9 | mpteq2da | ⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) |
| 11 | 10 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) ) |
| 12 | snfi | ⊢ { 𝑀 } ∈ Fin | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → { 𝑀 } ∈ Fin ) |
| 14 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 15 | 7 1 14 | gsumconstf | ⊢ ( ( 𝐺 ∈ Mnd ∧ { 𝑀 } ∈ Fin ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 16 | 2 13 4 15 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 17 | 11 16 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 18 | hashsng | ⊢ ( 𝑀 ∈ 𝑉 → ( ♯ ‘ { 𝑀 } ) = 1 ) | |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑀 } ) = 1 ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) = ( 1 ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 21 | 1 14 | mulg1 | ⊢ ( 𝐶 ∈ 𝐵 → ( 1 ( .g ‘ 𝐺 ) 𝐶 ) = 𝐶 ) |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → ( 1 ( .g ‘ 𝐺 ) 𝐶 ) = 𝐶 ) |
| 23 | 17 20 22 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |