This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumunsnd.b | ||
| gsumunsnd.p | |||
| gsumunsnd.g | |||
| gsumunsnd.a | |||
| gsumunsnd.f | |||
| gsumunsnd.m | |||
| gsumunsnd.d | |||
| gsumunsnd.y | |||
| gsumunsnd.s | |||
| gsumunsnfd.0 | |||
| Assertion | gsumunsnfd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumunsnd.b | ||
| 2 | gsumunsnd.p | ||
| 3 | gsumunsnd.g | ||
| 4 | gsumunsnd.a | ||
| 5 | gsumunsnd.f | ||
| 6 | gsumunsnd.m | ||
| 7 | gsumunsnd.d | ||
| 8 | gsumunsnd.y | ||
| 9 | gsumunsnd.s | ||
| 10 | gsumunsnfd.0 | ||
| 11 | snfi | ||
| 12 | unfi | ||
| 13 | 4 11 12 | sylancl | |
| 14 | elun | ||
| 15 | elsni | ||
| 16 | 15 9 | sylan2 | |
| 17 | 8 | adantr | |
| 18 | 16 17 | eqeltrd | |
| 19 | 5 18 | jaodan | |
| 20 | 14 19 | sylan2b | |
| 21 | disjsn | ||
| 22 | 7 21 | sylibr | |
| 23 | eqidd | ||
| 24 | 1 2 3 13 20 22 23 | gsummptfidmsplit | |
| 25 | cmnmnd | ||
| 26 | 3 25 | syl | |
| 27 | nfv | ||
| 28 | 1 26 6 8 9 27 10 | gsumsnfd | |
| 29 | 28 | oveq2d | |
| 30 | 24 29 | eqtrd |