This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpropd.f | |- ( ph -> F e. V ) |
|
| gsumpropd.g | |- ( ph -> G e. W ) |
||
| gsumpropd.h | |- ( ph -> H e. X ) |
||
| gsumpropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
||
| gsumpropd.p | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
||
| Assertion | gsumpropd | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpropd.f | |- ( ph -> F e. V ) |
|
| 2 | gsumpropd.g | |- ( ph -> G e. W ) |
|
| 3 | gsumpropd.h | |- ( ph -> H e. X ) |
|
| 4 | gsumpropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| 5 | gsumpropd.p | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
|
| 6 | 5 | oveqd | |- ( ph -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
| 7 | 6 | eqeq1d | |- ( ph -> ( ( s ( +g ` G ) t ) = t <-> ( s ( +g ` H ) t ) = t ) ) |
| 8 | 5 | oveqd | |- ( ph -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) |
| 9 | 8 | eqeq1d | |- ( ph -> ( ( t ( +g ` G ) s ) = t <-> ( t ( +g ` H ) s ) = t ) ) |
| 10 | 7 9 | anbi12d | |- ( ph -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 11 | 4 10 | raleqbidv | |- ( ph -> ( A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 12 | 4 11 | rabeqbidv | |- ( ph -> { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) |
| 13 | 12 | sseq2d | |- ( ph -> ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } <-> ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 14 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 15 | 5 | oveqdr | |- ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) |
| 16 | 14 4 15 | grpidpropd | |- ( ph -> ( 0g ` G ) = ( 0g ` H ) ) |
| 17 | 5 | seqeq2d | |- ( ph -> seq m ( ( +g ` G ) , F ) = seq m ( ( +g ` H ) , F ) ) |
| 18 | 17 | fveq1d | |- ( ph -> ( seq m ( ( +g ` G ) , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) |
| 19 | 18 | eqeq2d | |- ( ph -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) |
| 20 | 19 | anbi2d | |- ( ph -> ( ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 21 | 20 | rexbidv | |- ( ph -> ( E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 22 | 21 | exbidv | |- ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 23 | 22 | iotabidv | |- ( ph -> ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) = ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 24 | 12 | difeq2d | |- ( ph -> ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) = ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 25 | 24 | imaeq2d | |- ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) |
| 26 | 25 | fveq2d | |- ( ph -> ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) = ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) |
| 27 | 26 | oveq2d | |- ( ph -> ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) = ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) |
| 28 | 27 | f1oeq2d | |- ( ph -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) <-> f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) |
| 29 | 25 | f1oeq3d | |- ( ph -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) <-> f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) |
| 30 | 28 29 | bitrd | |- ( ph -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) <-> f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) |
| 31 | 5 | seqeq2d | |- ( ph -> seq 1 ( ( +g ` G ) , ( F o. f ) ) = seq 1 ( ( +g ` H ) , ( F o. f ) ) ) |
| 32 | 31 26 | fveq12d | |- ( ph -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) |
| 33 | 32 | eqeq2d | |- ( ph -> ( x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) <-> x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) |
| 34 | 30 33 | anbi12d | |- ( ph -> ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) <-> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) |
| 35 | 34 | exbidv | |- ( ph -> ( E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) <-> E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) |
| 36 | 35 | iotabidv | |- ( ph -> ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) |
| 37 | 23 36 | ifeq12d | |- ( ph -> if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) ) = if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) ) |
| 38 | 13 16 37 | ifbieq12d | |- ( ph -> if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) ) ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) ) ) |
| 39 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 40 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 41 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 42 | eqid | |- { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } |
|
| 43 | eqidd | |- ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
|
| 44 | eqidd | |- ( ph -> dom F = dom F ) |
|
| 45 | 39 40 41 42 43 2 1 44 | gsumvalx | |- ( ph -> ( G gsum F ) = if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) ) ) ) |
| 46 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 47 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 48 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 49 | eqid | |- { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } |
|
| 50 | eqidd | |- ( ph -> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) |
|
| 51 | 46 47 48 49 50 3 1 44 | gsumvalx | |- ( ph -> ( H gsum F ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) ) ) |
| 52 | 38 45 51 | 3eqtr4d | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |